Is there any way of doing this without writing a for loop?
Suppose we have the following data:
d = {'A': {-1: 0.19052041339798062,
0: -0.0052531481871952871,
1: -0.0022017467720961644,
2: -0.051109629013311737,
3: 0.18569441222621336},
'B': {-1: 0.029181417300734112,
0: -0.0031021862533310743,
1: -0.014358516787430284,
2: 0.0046386615308068877,
3: 0.056676322314857898},
'C': {-1: 0.071883343375205785,
0: -0.011930096520251999,
1: -0.011836365865654104,
2: -0.0033930358388315237,
3: 0.11812543193496111},
'D': {-1: 0.17670604006475121,
0: -0.088756293654161142,
1: -0.093383245649534194,
2: 0.095649943383654359,
3: 0.51030339029516592},
'E': {-1: 0.30273513342295627,
0: -0.30640233455497284,
1: -0.32698263145105921,
2: 0.60257484810641992,
3: 0.36859978928328413},
'F': {-1: 0.25328469046380131,
0: -0.063890702001567143,
1: -0.10007720832198815,
2: 0.08153164759036724,
3: 0.36606175240021183},
'G': {-1: 0.28764606940509913,
0: -0.11022209861109525,
1: -0.1264164305949009,
2: 0.17030074112227081,
3: 0.30100292424380881}}
df = pd.DataFrame(d)
I know I can get the std values by std_vals = df.std()
, which gives the following result, and use these values to drop the columns one by one.
In[]:
pd.DataFrame(d).std()
Out[]:
A 0.115374
B 0.028435
C 0.059394
D 0.247617
E 0.421117
F 0.200776
G 0.209710
dtype: float64
However, I don't know how to use the Pandas indexing to drop the columns with low std values directly.
Is there a way to do this, or I need to loop over each column?
Methods for removing zero variance columns This can easily be resolved, if that is the case, by adding na. rm = TRUE to the instances of the var() , min() , and max() functions. This will slightly reduce their efficiency.
Use pandas. DataFrame. drop() method to delete/remove rows with condition(s).
You can use the loc
method of a dataframe to select certain columns based on a Boolean indexer. Create the indexer like this (uses Numpy Array broadcasting to apply the condition to each column):
df.std() > 0.3
Out[84]:
A False
B False
C False
D False
E True
F False
G False
dtype: bool
Then call loc
with :
in the first position to indicate that you want to return all rows:
df.loc[:, df.std() > .3]
Out[85]:
E
-1 0.302735
0 -0.306402
1 -0.326983
2 0.602575
3 0.368600
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With