I have a DataFrame like this (simplified example)
id v0 v1 v2 v3 v4
1 10 5 10 22 50
2 22 23 55 60 50
3 8 2 40 80 110
4 15 15 25 100 101
And would like to create an additional column that is either 1 or 0. 1 if v0 value is in the values of v1 to v4, and 0 if it's not. So, in this example for id 1 then the value should be 1 (since v2 = 10) and for id 2 value should be 0 since 22 is not in v1 thru v4.
In reality the table is way bigger (around 100,000 rows and variables go from v1 to v99).
You can check if a column contains/exists a particular value (string/int), list of multiple values in pandas DataFrame by using pd. series() , in operator, pandas. series. isin() , str.
In order to check if a list of multiple selected columns exist in pandas DataFrame, use set. issubset . For Example, if set(['Courses','Duration']). issubset(df.
You can use the underlying numpy
arrays for performance:
Setup
a = df.v0.values
b = df.iloc[:, 2:].values
df.assign(out=(a[:, None]==b).any(1).astype(int))
id v0 v1 v2 v3 v4 out
0 1 10 5 10 22 50 1
1 2 22 23 55 60 50 0
2 3 8 2 40 80 110 0
3 4 15 15 25 100 101 1
This solution leverages broadcasting to allow for pairwise comparison:
First, we broadcast a
:
>>> a[:, None]
array([[10],
[22],
[ 8],
[15]], dtype=int64)
Which allows for pairwise comparison with b
:
>>> a[:, None] == b
array([[False, True, False, False],
[False, False, False, False],
[False, False, False, False],
[ True, False, False, False]])
We then simply check for any True
results along the first axis, and convert to integer.
Performance
Functions
def user_chris(df):
a = df.v0.values
b = df.iloc[:, 2:].values
return (a[:, None]==b).any(1).astype(int)
def rahlf23(df):
df = df.set_index('id')
return df.drop('v0', 1).isin(df['v0']).any(1).astype(int)
def chris_a(df):
return df.loc[:, "v1":].eq(df['v0'], 0).any(1).astype(int)
def chris(df):
return df.apply(lambda x: int(x['v0'] in x.values[2:]), axis=1)
def anton_vbr(df):
df.set_index('id', inplace=True)
return df.isin(df.pop('v0')).any(1).astype(int)
Setup
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from timeit import timeit
res = pd.DataFrame(
index=['user_chris', 'rahlf23', 'chris_a', 'chris', 'anton_vbr'],
columns=[10, 50, 100, 500, 1000, 5000],
dtype=float
)
for f in res.index:
for c in res.columns:
vals = np.random.randint(1, 100, (c, c))
vals = np.column_stack((np.arange(vals.shape[0]), vals))
df = pd.DataFrame(vals, columns=['id'] + [f'v{i}' for i in range(0, vals.shape[0])])
stmt = '{}(df)'.format(f)
setp = 'from __main__ import df, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=50)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()
Output
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With