Background
As noted in this question, I'm using Scalaz 7 iteratees to process a large (i.e., unbounded) stream of data in constant heap space.
My code looks like this:
type ErrorOrT[M[+_], A] = EitherT[M, Throwable, A] type ErrorOr[A] = ErrorOrT[IO, A] def processChunk(c: Chunk, idx: Long): Result def process(data: EnumeratorT[Chunk, ErrorOr]): IterateeT[Vector[(Chunk, Long)], ErrorOr, Vector[Result]] = Iteratee.fold[Vector[(Chunk, Long)], ErrorOr, Vector[Result]](Nil) { (rs, vs) => rs ++ vs map { case (c, i) => processChunk(c, i) } } &= (data.zipWithIndex mapE Iteratee.group(P))
The Problem
I seem to have run into a memory leak, but I'm not familiar enough with Scalaz/FP to know whether the bug is in Scalaz or in my code. Intuitively, I expect this code to require only (on the order of) P times the Chunk
-size space.
Note: I found a similar question in which an OutOfMemoryError
was encountered, but my code is not using consume
.
Testing
I ran some tests to try and isolate the problem. To summarize, the leak only appears to arise when both zipWithIndex
and group
are used.
// no zipping/grouping scala> (i1 &= enumArrs(1 << 25, 128)).run.unsafePerformIO res47: Long = 4294967296 // grouping only scala> (i2 &= (enumArrs(1 << 25, 128) mapE Iteratee.group(4))).run.unsafePerformIO res49: Long = 4294967296 // zipping and grouping scala> (i3 &= (enumArrs(1 << 25, 128).zipWithIndex mapE Iteratee.group(4))).run.unsafePerformIO java.lang.OutOfMemoryError: Java heap space // zipping only scala> (i4 &= (enumArrs(1 << 25, 128).zipWithIndex)).run.unsafePerformIO res51: Long = 4294967296 // no zipping/grouping, larger arrays scala> (i1 &= enumArrs(1 << 27, 128)).run.unsafePerformIO res53: Long = 17179869184 // zipping only, larger arrays scala> (i4 &= (enumArrs(1 << 27, 128).zipWithIndex)).run.unsafePerformIO res54: Long = 17179869184
Code for the tests:
import scalaz.iteratee._, scalaz.effect.IO, scalaz.std.vector._ // define an enumerator that produces a stream of new, zero-filled arrays def enumArrs(sz: Int, n: Int) = Iteratee.enumIterator[Array[Int], IO]( Iterator.continually(Array.fill(sz)(0)).take(n)) // define an iteratee that consumes a stream of arrays // and computes its length val i1 = Iteratee.fold[Array[Int], IO, Long](0) { (c, a) => c + a.length } // define an iteratee that consumes a grouped stream of arrays // and computes its length val i2 = Iteratee.fold[Vector[Array[Int]], IO, Long](0) { (c, as) => c + as.map(_.length).sum } // define an iteratee that consumes a grouped/zipped stream of arrays // and computes its length val i3 = Iteratee.fold[Vector[(Array[Int], Long)], IO, Long](0) { (c, vs) => c + vs.map(_._1.length).sum } // define an iteratee that consumes a zipped stream of arrays // and computes its length val i4 = Iteratee.fold[(Array[Int], Long), IO, Long](0) { (c, v) => c + v._1.length }
Questions
This will come as little consolation for anyone who's stuck with the older iteratee
API, but I recently verified that an equivalent test passes against the scalaz-stream API. This is a newer stream processing API that is intended to replace iteratee
.
For completeness, here's the test code:
// create a stream containing `n` arrays with `sz` Ints in each one def streamArrs(sz: Int, n: Int): Process[Task, Array[Int]] = (Process emit Array.fill(sz)(0)).repeat take n (streamArrs(1 << 25, 1 << 14).zipWithIndex pipe process1.chunk(4) pipe process1.fold(0L) { (c, vs) => c + vs.map(_._1.length.toLong).sum }).runLast.run
This should work with any value for the n
parameter (provided you're willing to wait long enough) -- I tested with 2^14 32MiB arrays (i.e., a total of half a TiB of memory allocated over time).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With