Overview. In Java, we can use the try-with-resources statement to automatically close all resources that we need in our code. This statement works with every class that implements the AutoCloseable interface. Unfortunately, such a feature does not exist in Scala.
automatic resource management or try-with-resources is a new exception handling mechanism that was introduced in Java 7, which automatically closes the resources used within the try-catch block.
Chris Hansen's blog entry 'ARM Blocks in Scala: Revisited' from 3/26/09 talks about about slide 21 of Martin Odersky's FOSDEM presentation. This next block is taken straight from slide 21 (with permission):
def using[T <: { def close() }]
(resource: T)
(block: T => Unit)
{
try {
block(resource)
} finally {
if (resource != null) resource.close()
}
}
--end quote--
Then we can call like this:
using(new BufferedReader(new FileReader("file"))) { r =>
var count = 0
while (r.readLine != null) count += 1
println(count)
}
What are the drawbacks of this approach? That pattern would seem to address 95% of where I would need automatic resource management...
Edit: added code snippet
Edit2: extending the design pattern - taking inspiration from python with
statement and addressing:
Managed
classThis is with Scala 2.8.
trait Managed[T] {
def onEnter(): T
def onExit(t:Throwable = null): Unit
def attempt(block: => Unit): Unit = {
try { block } finally {}
}
}
def using[T <: Any](managed: Managed[T])(block: T => Unit) {
val resource = managed.onEnter()
var exception = false
try { block(resource) } catch {
case t:Throwable => exception = true; managed.onExit(t)
} finally {
if (!exception) managed.onExit()
}
}
def using[T <: Any, U <: Any]
(managed1: Managed[T], managed2: Managed[U])
(block: T => U => Unit) {
using[T](managed1) { r =>
using[U](managed2) { s => block(r)(s) }
}
}
class ManagedOS(out:OutputStream) extends Managed[OutputStream] {
def onEnter(): OutputStream = out
def onExit(t:Throwable = null): Unit = {
attempt(out.close())
if (t != null) throw t
}
}
class ManagedIS(in:InputStream) extends Managed[InputStream] {
def onEnter(): InputStream = in
def onExit(t:Throwable = null): Unit = {
attempt(in.close())
if (t != null) throw t
}
}
implicit def os2managed(out:OutputStream): Managed[OutputStream] = {
return new ManagedOS(out)
}
implicit def is2managed(in:InputStream): Managed[InputStream] = {
return new ManagedIS(in)
}
def main(args:Array[String]): Unit = {
using(new FileInputStream("foo.txt"), new FileOutputStream("bar.txt")) {
in => out =>
Iterator continually { in.read() } takeWhile( _ != -1) foreach {
out.write(_)
}
}
}
Daniel,
I've just recently deployed the scala-arm library for automatic resource management. You can find the documentation here: https://github.com/jsuereth/scala-arm/wiki
This library supports three styles of usage (currently):
1) Imperative/for-expression:
import resource._
for(input <- managed(new FileInputStream("test.txt")) {
// Code that uses the input as a FileInputStream
}
2) Monadic-style
import resource._
import java.io._
val lines = for { input <- managed(new FileInputStream("test.txt"))
val bufferedReader = new BufferedReader(new InputStreamReader(input))
line <- makeBufferedReaderLineIterator(bufferedReader)
} yield line.trim()
lines foreach println
3) Delimited Continuations-style
Here's an "echo" tcp server:
import java.io._
import util.continuations._
import resource._
def each_line_from(r : BufferedReader) : String @suspendable =
shift { k =>
var line = r.readLine
while(line != null) {
k(line)
line = r.readLine
}
}
reset {
val server = managed(new ServerSocket(8007)) !
while(true) {
// This reset is not needed, however the below denotes a "flow" of execution that can be deferred.
// One can envision an asynchronous execuction model that would support the exact same semantics as below.
reset {
val connection = managed(server.accept) !
val output = managed(connection.getOutputStream) !
val input = managed(connection.getInputStream) !
val writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(output)))
val reader = new BufferedReader(new InputStreamReader(input))
writer.println(each_line_from(reader))
writer.flush()
}
}
}
The code makes uses of a Resource type-trait, so it's able to adapt to most resource types. It has a fallback to use structural typing against classes with either a close or dispose method. Please check out the documentation and let me know if you think of any handy features to add.
Here's James Iry solution using continuations:
// standard using block definition
def using[X <: {def close()}, A](resource : X)(f : X => A) = {
try {
f(resource)
} finally {
resource.close()
}
}
// A DC version of 'using'
def resource[X <: {def close()}, B](res : X) = shift(using[X, B](res))
// some sugar for reset
def withResources[A, C](x : => A @cps[A, C]) = reset{x}
Here are the solutions with and without continuations for comparison:
def copyFileCPS = using(new BufferedReader(new FileReader("test.txt"))) {
reader => {
using(new BufferedWriter(new FileWriter("test_copy.txt"))) {
writer => {
var line = reader.readLine
var count = 0
while (line != null) {
count += 1
writer.write(line)
writer.newLine
line = reader.readLine
}
count
}
}
}
}
def copyFileDC = withResources {
val reader = resource[BufferedReader,Int](new BufferedReader(new FileReader("test.txt")))
val writer = resource[BufferedWriter,Int](new BufferedWriter(new FileWriter("test_copy.txt")))
var line = reader.readLine
var count = 0
while(line != null) {
count += 1
writer write line
writer.newLine
line = reader.readLine
}
count
}
And here's Tiark Rompf's suggestion of improvement:
trait ContextType[B]
def forceContextType[B]: ContextType[B] = null
// A DC version of 'using'
def resource[X <: {def close()}, B: ContextType](res : X): X @cps[B,B] = shift(using[X, B](res))
// some sugar for reset
def withResources[A](x : => A @cps[A, A]) = reset{x}
// and now use our new lib
def copyFileDC = withResources {
implicit val _ = forceContextType[Int]
val reader = resource(new BufferedReader(new FileReader("test.txt")))
val writer = resource(new BufferedWriter(new FileWriter("test_copy.txt")))
var line = reader.readLine
var count = 0
while(line != null) {
count += 1
writer write line
writer.newLine
line = reader.readLine
}
count
}
For now Scala 2.13 has finally supported: try with resources
by using Using :), Example:
val lines: Try[Seq[String]] =
Using(new BufferedReader(new FileReader("file.txt"))) { reader =>
Iterator.unfold(())(_ => Option(reader.readLine()).map(_ -> ())).toList
}
or using Using.resource
avoid Try
val lines: Seq[String] =
Using.resource(new BufferedReader(new FileReader("file.txt"))) { reader =>
Iterator.unfold(())(_ => Option(reader.readLine()).map(_ -> ())).toList
}
You can find more examples from Using doc.
A utility for performing automatic resource management. It can be used to perform an operation using resources, after which it releases the resources in reverse order of their creation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With