OOP is mainly used to organise your business logic while AOP helps to organise your non-functional things like Auditing, Logging, Transaction Management, Security etc. This way you can decouple your business logic from non-functional logic, which makes code cleaner.
Aspect-oriented programming is a technique for building common, reusable routines that can be applied applicationwide. During development this facilitates separation of core application logic and common, repeatable tasks (input validation, logging, error handling, etc.).
Nowadays I see some AOP still around, but it seems to have faded into the background. Even Gregor Kiczales (inventor of AOP) called it a 15% solution. So I guess AOP has its reason for existence, but it depends on the individual developer to use it the right way.
Why "vs"? It is not "vs". You can use Aspect Oriented programming in combination with functional programming, but also in combination with Object Oriented one. It is not "vs", it is "Aspect Oriented Programming with Object Oriented Programming".
To me AOP is some kind of "meta-programming". Everything that AOP does could also be done without it by just adding more code. AOP just saves you writing this code.
Wikipedia has one of the best examples for this meta-programming. Assume you have a graphical class with many "set...()" methods. After each set method, the data of the graphics changed, thus the graphics changed and thus the graphics need to be updated on screen. Assume to repaint the graphics you must call "Display.update()". The classical approach is to solve this by adding more code. At the end of each set method you write
void set...(...) {
:
:
Display.update();
}
If you have 3 set-methods, that is not a problem. If you have 200 (hypothetical), it's getting real painful to add this everywhere. Also whenever you add a new set-method, you must be sure to not forget adding this to the end, otherwise you just created a bug.
AOP solves this without adding tons of code, instead you add an aspect:
after() : set() {
Display.update();
}
And that's it! Instead of writing the update code yourself, you just tell the system that after a set() pointcut has been reached, it must run this code and it will run this code. No need to update 200 methods, no need to make sure you don't forget to add this code on a new set-method. Additionally you just need a pointcut:
pointcut set() : execution(* set*(*) ) && this(MyGraphicsClass) && within(com.company.*);
What does that mean? That means if a method is named "set*" (* means any name might follow after set), regardless of what the method returns (first asterisk) or what parameters it takes (third asterisk) and it is a method of MyGraphicsClass and this class is part of the package "com.company.*", then this is a set() pointcut. And our first code says "after running any method that is a set pointcut, run the following code".
See how AOP elegantly solves the problem here? Actually everything described here can be done at compile time. A AOP preprocessor can just modify your source (e.g. adding Display.update() to the end of every set-pointcut method) before even compiling the class itself.
However, this example also shows one of the big downsides of AOP. AOP is actually doing something that many programmers consider an "Anti-Pattern". The exact pattern is called "Action at a distance".
Action at a distance is an anti-pattern (a recognized common error) in which behavior in one part of a program varies wildly based on difficult or impossible to identify operations in another part of the program.
As a newbie to a project, I might just read the code of any set-method and consider it broken, as it seems to not update the display. I don't see by just looking at the code of a set-method, that after it is executed, some other code will "magically" be executed to update the display. I consider this a serious downside! By making changes to a method, strange bugs might be introduced. Further understanding the code flow of code where certain things seem to work correctly, but are not obvious (as I said, they just magically work... somehow), is really hard.
Just to clarify that: Some people might have the impression I'm saying AOP is something bad and should not be used. That's not what I'm saying! AOP is actually a great feature. I just say "Use it carefully". AOP will only cause problems if you mix up normal code and AOP for the same Aspect. In the example above, we have the Aspect of updating the values of a graphical object and painting the updated object. That is in fact a single aspect. Coding half of it as normal code and the other half of it as aspect is what adds the problem.
If you use AOP for a completely different aspect, e.g. for logging, you will not run into the anti-pattern problem. In that case a newbie to the project might wonder "Where do all these log messages come from? I don't see any log output in the code", but that is not a huge problem. Changes he makes to the program logic will hardly break the log facility and changes made to the log facility will hardly break his program logic - these aspects are totally separated. Using AOP for logging has the advantage that your program code can fully concentrate on doing whatever it should do and you still can have sophisticated logging, without having your code being cluttered up by hundreds of log messages everywhere. Also when new code is introduced, magically log messages will appear at the right time with the right content. The newbie programmer might not understand why they are there or where they came from, but since they will log the "right thing" at the "right time", he can just happily accept the fact that they are there and move on to something else.
So a good usage of AOP in my example would be to always log if any value has been updated via a set method. This will not create an anti-pattern and hardly ever be the cause of any problem.
One might say, if you can easily abuse AOP to create so many problems, it's a bad idea to use it all. However which technology can't be abused? You can abuse data encapsulation, you can abuse inheritance. Pretty much every useful programming technology can be abused. Consider a programming language so limited that it only contains features that can't be abused; a language where features can only be used as they were initially intended to be used. Such a language would be so limited that it's arguable if it can be even used for real world programming.
Aspect oriented programming provides a nice way to implement cross-cutting concerns like logging, security. These cross-cutting concerns are pieces of logic that have to be applied at many places but actually don't have anything to do with the business logic.
You shouldn't see AOP as a replacement of OOP, but more as a nice add-on that makes your code more clean, loosely-coupled and focused on the business logic.
So by applying AOP you will get 2 major benefits:
The logic for each concern is now in one place, as opposed to being scattered all over the code base.
Classes are cleaner since they only contain code for their primary concern (or core functionality) and secondary concerns have been moved to aspects.
OOP and AOP are not mutually exclusive. AOP can be good addition to OOP. AOP is especially handy for adding standard code like logging, performance tracking, etc. to methods without clogging up the method code with this standard code.
I think there is no general answer to this question but one thing to be noted is, that AOP does not replace OOP but adds certain decomposition features that address the so-called tyranny of the dominant composition (1) (or crosscutting concerns).
It surely helps in certain cases as long as you're in control of the tools and languages to use for a specific project, but also adds a new level of complexity regarding interaction of aspects and the need for additional tools like the AJDT to still understand your program.
Gregor Kiczales once gave an interesting introductory talk on AOP at Google Tech Talks which I recommend watching: Aspect Oriented Programming: Radical Research in Modularity.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With