I have the following definition of fixed-length-vectors using ghcs extensions GADTs
, TypeOperators
and DataKinds
:
data Vec n a where
T :: Vec VZero a
(:.) :: a -> Vec n a -> Vec (VSucc n) a
infixr 3 :.
data VNat = VZero | VSucc VNat -- ... promoting Kind VNat
type T1 = VSucc VZero
type T2 = VSucc T1
and the following defiition of a TypeOperator :+
:
type family (n::VNat) :+ (m::VNat) :: VNat
type instance VZero :+ n = n
type instance VSucc n :+ m = VSucc (n :+ m)
For my whole intented library to make sense, I need to apply a fixed-length-vector-function of type (Vec n b)->(Vec m b)
to the inial part of a longer vector Vec (n:+k) b
. Let's call that function prefixApp
. It should have type
prefixApp :: ((Vec n b)->(Vec m b)) -> (Vec (n:+k) b) -> (Vec (m:+k) b)
Here's an example application with the fixed-length-vector-function change2
defined like this:
change2 :: Vec T2 a -> Vec T2 a
change2 (x :. y :. T) = (y :. x :. T)
prefixApp
should be able to apply change2
to the prefix of any vector of length >=2, e.g.
Vector> prefixApp change2 (1 :. 2 :. 3 :. 4:. T)
(2 :. 1 :. 3 :. 4 :. T)
Has anyone any idea how to implement prefixApp
?
(The problem is, that a part of the type of the fixed-length-vector-function has to be used to grab the prefix of the right size...)
Edit: Daniel Wagners (very clever!) solution seems to have worked with some release candidate of ghc 7.6 (not an official release!). IMHO it shouldnt work, however, for 2 reasons:
prefixApp
lacks an VNum m
in the context (for prepend (f b)
to typecheck correctly.:+
to be injective in its first argument (nor the second, but thats not essential here), which leads to a type error: from the type-declaration, we know that vec
must have type Vec (n:+k) a
and the type-checker infers for the expression split vec
on the right-hand side of the definition a type of Vec (n:+k0) a
. But: the type-checker cannot infer that k ~ k0
(since there is no assurance that :+
is injective).Does anyone know a solution to this second issue? How can I declare :+
to be injective in its first argument and/or how can I avoid running into this issue at all?
Here is a version where split is not in a type class. Here we build a singleton type for natural numbers (SN), which enables to pattern match on `n' in the definition of split'. This extra argument can then be hidden by the use of a type class (ToSN).
The type Tag is used to manually specify the non-inferred arguments.
(this answer has been co-authored with Daniel Gustafsson)
Here is the code:
{-# LANGUAGE TypeFamilies, TypeOperators, DataKinds, GADTs, ScopedTypeVariables, FlexibleContexts #-}
module Vec where
data VNat = VZero | VSucc VNat -- ... promoting Kind VNat
data Vec n a where
T :: Vec VZero a
(:.) :: a -> Vec n a -> Vec (VSucc n) a·
infixr 3 :.
type T1 = VSucc VZero
type T2 = VSucc T1
data Tag (n::VNat) = Tag
data SN (n::VNat) where
Z :: SN VZero
S :: SN n -> SN (VSucc n)
class ToSN (n::VNat) where
toSN :: SN n
instance ToSN VZero where
toSN = Z
instance ToSN n => ToSN (VSucc n) where
toSN = S toSN
type family (n::VNat) :+ (m::VNat) :: VNat
type instance VZero :+ n = n
type instance VSucc n :+ m = VSucc (n :+ m)
split' :: SN n -> Tag m -> Vec (n :+ m) a -> (Vec n a, Vec m a)
split' Z _ xs = (T , xs)
split' (S n) _ (x :. xs) = let (as , bs) = split' n Tag xs in (x :. as , bs)
split :: ToSN n => Tag m -> Vec (n :+ m) a -> (Vec n a, Vec m a)
split = split' toSN
append :: Vec n a -> Vec m a -> Vec (n :+ m) a
append T ys = ys
append (x :. xs) ys = x :. append xs ys
prefixChange :: forall a m n k. ToSN n => (Vec n a -> Vec m a) -> Vec (n :+ k) a -> Vec (m :+ k) a
prefixChange f xs = let (as , bs) = split (Tag :: Tag k) xs in append (f as) bs
Make a class:
class VNum (n::VNat) where
split :: Vec (n:+m) a -> (Vec n a, Vec m a)
prepend :: Vec n a -> Vec m a -> Vec (n:+m) a
instance VNum VZero where
split v = (T, v)
prepend _ v = v
instance VNum n => VNum (VSucc n) where
split (x :. xs) = case split xs of (b, e) -> (x :. b, e)
prepend (x :. xs) v = x :. prepend xs v
prefixApp :: VNum n => (Vec n a -> Vec m a) -> (Vec (n:+k) a -> (Vec (m:+k) a))
prefixApp f vec = case split vec of (b, e) -> prepend (f b) e
If you can live with a slightly different type of prefixApp:
{-# LANGUAGE GADTs, TypeOperators, DataKinds, TypeFamilies #-}
import qualified Data.Foldable as F
data VNat = VZero | VSucc VNat -- ... promoting Kind VNat
type T1 = VSucc VZero
type T2 = VSucc T1
type T3 = VSucc T2
type family (n :: VNat) :+ (m :: VNat) :: VNat
type instance VZero :+ n = n
type instance VSucc n :+ m = VSucc (n :+ m)
type family (n :: VNat) :- (m :: VNat) :: VNat
type instance n :- VZero = n
type instance VSucc n :- VSucc m = n :- m
data Vec n a where
T :: Vec VZero a
(:.) :: a -> Vec n a -> Vec (VSucc n) a
infixr 3 :.
-- Just to define Show for Vec
instance F.Foldable (Vec n) where
foldr _ b T = b
foldr f b (a :. as) = a `f` F.foldr f b as
instance Show a => Show (Vec n a) where
show = show . F.foldr (:) []
class Splitable (n::VNat) where
split :: Vec k b -> (Vec n b, Vec (k:-n) b)
instance Splitable VZero where
split r = (T,r)
instance Splitable n => Splitable (VSucc n) where
split (x :. xs) =
let (xs' , rs) = split xs
in ((x :. xs') , rs)
append :: Vec n a -> Vec m a -> Vec (n:+m) a
append T r = r
append (l :. ls) r = l :. append ls r
prefixApp :: Splitable n => (Vec n b -> Vec m b) -> Vec k b -> Vec (m:+(k:-n)) b
prefixApp f v = let (v',rs) = split v in append (f v') rs
-- A test
inp :: Vec (T2 :+ T3) Int
inp = 1 :. 2 :. 3 :. 4:. 5 :. T
change2 :: Vec T2 a -> Vec T2 a
change2 (x :. y :. T) = (y :. x :. T)
test = prefixApp change2 inp -- -> [2,1,3,4,5]
In fact, your original signature can also be used (with augmented context):
prefixApp :: (Splitable n, (m :+ k) ~ (m :+ ((n :+ k) :- n))) =>
((Vec n b)->(Vec m b)) -> (Vec (n:+k) b) -> (Vec (m:+k) b)
prefixApp f v = let (v',rs) = split v in append (f v') rs
Works in 7.4.1
Upd: Just for fun, the solution in Agda:
data Nat : Set where
zero : Nat
succ : Nat -> Nat
_+_ : Nat -> Nat -> Nat
zero + r = r
succ n + r = succ (n + r)
data _*_ (A B : Set) : Set where
_,_ : A -> B -> A * B
data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (succ n)
split : {A : Set}{k n : Nat} -> Vec A (n + k) -> (Vec A n) * (Vec A k)
split {_} {_} {zero} v = ([] , v)
split {_} {_} {succ _} (h :: t) with split t
... | (l , r) = ((h :: l) , r)
append : {A : Set}{n m : Nat} -> Vec A n -> Vec A m -> Vec A (n + m)
append [] r = r
append (h :: t) r with append t r
... | tr = h :: tr
prefixApp : {A : Set}{n m k : Nat} -> (Vec A n -> Vec A m) -> Vec A (n + k) -> Vec A (m + k)
prefixApp f v with split v
... | (l , r) = append (f l) r
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With