I fit models like so
groupedTrainingSet = group_by(trainingSet, geo);
models = do(groupedTrainingSet, mod = lm(revenue ~ julian, data=.))
grouptedTestSet = group_by(testSet, geo);
// TODO: apply model back to test set
Where models looks like
geo mod
1 APAC <S3:lm>
2 LATAM <S3:lm>
3 ME <S3:lm>
7 ROW <S3:lm>
4 WE <S3:lm>
5 NA <S3:lm>
I think I should be able to just apply 'do' again but I'm not seeing it...Alternatively I can do something along the lines of
apply(trainingData, fitted =
predict(select(models, geo==geo)$mod, .));
But I'm not sure about the syntax there.
Here is a dplyr
method of obtaining a similar answer, following the approach used by @Mike.Gahan :
library(dplyr)
iris.models <- iris %>%
group_by(Species) %>%
do(mod = lm(Sepal.Length ~ Sepal.Width, data = .))
iris %>%
tbl_df %>%
left_join(iris.models) %>%
rowwise %>%
mutate(Sepal.Length_pred = predict(mod,
newdata = list("Sepal.Width" = Sepal.Width)))
alternatively you can do it in one step if you create a predicting function:
m <- function(df) {
mod <- lm(Sepal.Length ~ Sepal.Width, data = df)
pred <- predict(mod,newdata = df["Sepal.Width"])
data.frame(df,pred)
}
iris %>%
group_by(Species) %>%
do(m(.))
Not sure there is a question here, but I think the data.table
package is especially efficient here.
#Load data.table package
require(data.table)
iris <- data.table(iris)
#Make a model for each species group
iris.models <- iris[, list(Model = list(lm(Sepal.Length ~ Sepal.Width))),
keyby = Species]
#Make predictions on dataset
setkey(iris, Species)
iris[iris.models, prediction := predict(i.Model[[1]], .SD), by = .EACHI]
(for data.table
version <= 1.9.2 omit the by = .EACHI
part)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With