I try to convert a column from string to timestamp with this code
from pyspark.sql.functions import unix_timestamp
(sc
.parallelize([Row(dt='2017-01-23T08:12:39.929+01:00')])
.toDF()
.withColumn("parsed", unix_timestamp("dt", "yyyy-MM-ddThh:mm:ss")
.cast("double")
.cast("timestamp"))
.show(1, False))
but I get null
+-----------------------------+------+
|dt |parsed|
+-----------------------------+------+
|2017-01-23T08:12:39.929+01:00|null |
+-----------------------------+------+
why ?
You get NULL
because format you use doesn't match the data. To get a minimal match you'll have to escape T
with single quotes:
yyyy-MM-dd'T'kk:mm:ss
and to match the full pattern you'll need S
for millisecond and X
for timezone:
yyyy-MM-dd'T'kk:mm:ss.SSSXXX
but in the current Spark version direct cast
:
from pyspark.sql.functions import col
col("dt").cast("timestamp")
should work just fine:
spark.sql(
"""SELECT CAST("2011-01-23T08:12:39.929+01:00" AS timestamp)"""
).show(1, False)
+------------------------------------------------+
|CAST(2011-01-23T08:12:39.929+01:00 AS TIMESTAMP)|
+------------------------------------------------+
|2011-01-23 08:12:39.929 |
+------------------------------------------------+
Reference: SimpleDateFormat
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With