If the ivar is private, the other parts of the program can't get at it as easily. With a declared property, the clever people can access and mutate quite easily via the accessors.
Yes, this can make a difference in some cases. Some programs have constraints where they can not use any objc messaging in certain parts of the program (think realtime). In other cases, you may want to access it directly for speed. In other cases, it's because objc messaging acts as an optimization firewall. Finally, it can reduce your reference count operations and minimize peak memory usage (if done correctly).
Example: If you have a C++ type, direct access is just the better approach sometimes. The type may not be copyable, or it may not be trivial to copy.
Many of your ivars are codependent. You must ensure your data integrity in multithreaded context. Thus, you may favor direct access to multiple members in critical sections. If you stick with accessors for codependent data, your locks must typically be reentrant and you will often end up making many more acquisitions (significantly more at times).
Since the subclasses can override any method, you may eventually see there is a semantic difference between writing to the interface versus managing your state appropriately. Direct access for program correctness is especially common in partially constructed states -- in your initializers and in dealloc
, it's best to use direct access. You may also find this common in the implementations of an accessor, a convenience constructor, copy
, mutableCopy
, and archiving/serialization implementations.
It's also more frequent as one moves from the everything has a public readwrite accessor mindset to one which hides its implementation details/data well. Sometimes you need to correctly step around side effects a subclass' override may introduce in order to do the right thing.
Declaring everything readwrite by default usually results in many accessor methods you never need, when you consider your program's execution for a moment. So it will add some fat to your program and load times as well.
In some cases, it's just completely unnecessary to add+type+maintain all that extra scaffolding for a simple variable such as a private bool that is written in one method and read in another.
That's not at all to say using properties or accessors is bad - each has important benefits and restrictions. Like many OO languages and approaches to design, you should also favor accessors with appropriate visibility in ObjC. There will be times you need to deviate. For that reason, I think it's often best to restrict direct accesses to the implementation which declares the ivar (e.g. declare it @private
).
re Edit 1:
Most of us have memorized how to call a hidden accessor dynamically (as long as we know the name…). Meanwhile, most of us have not memorized how to properly access ivars which aren't visible (beyond KVC). The class continuation helps, but it does introduce vulnerabilities.
This workaround's obvious:
if ([obj respondsToSelector:(@selector(setName:)])
[(id)obj setName:@"Al Paca"];
Now try it with an ivar only, and without KVC.
For me it is usually performance. Accessing an ivar of an object is as fast as accessing a struct member in C using a pointer to memory containing such a struct. In fact, Objective-C objects are basically C structs located in dynamically allocated memory. This is usually as fast as your code can get, not even hand optimized assembly code can be any faster than that.
Accessing an ivar through a getter/setting involves an Objective-C method call, which is much slower (at least 3-4 times) than a "normal" C function call and even a normal C function call would already be multiple times slower than accessing a struct member. Depending on the attributes of your property, the setter/getter implementation generated by the compiler may involve another C function call to the functions objc_getProperty
/objc_setProperty
, as these will have to retain
/copy
/autorelease
the objects as needed and further perform spinlocking for atomic properties where necessary. This can easily get very expensive and I'm not talking about being 50% slower.
Let's try this:
CFAbsoluteTime cft;
unsigned const kRuns = 1000 * 1000 * 1000;
cft = CFAbsoluteTimeGetCurrent();
for (unsigned i = 0; i < kRuns; i++) {
testIVar = i;
}
cft = CFAbsoluteTimeGetCurrent() - cft;
NSLog(@"1: %.1f picoseconds/run", (cft * 10000000000.0) / kRuns);
cft = CFAbsoluteTimeGetCurrent();
for (unsigned i = 0; i < kRuns; i++) {
[self setTestIVar:i];
}
cft = CFAbsoluteTimeGetCurrent() - cft;
NSLog(@"2: %.1f picoseconds/run", (cft * 10000000000.0) / kRuns);
Output:
1: 23.0 picoseconds/run
2: 98.4 picoseconds/run
This is 4.28 times slower and this was a non-atomic primitive int, pretty much the best case; most other cases are even worse (try an atomic NSString *
property!). So if you can live with the fact that each ivar access is 4-5 times slower than it could be, using properties is fine (at least when it comes to performance), however, there are plenty of situations where such a performance drop is completely unacceptable.
Some people argue, that this is not a real world problem, the code above is purely synthetic and you will never notice that in a real application. Okay then, let's try a real world sample.
The code following below defines Account
objects. An account has properties that describe name (NSString *
), gender (enum
), and age (unsigned
) of its owner, as well as a balance (int64_t
). An account object has an init
method and a compare:
method. The compare:
method is defined as: Female orders before male, names order alphabetically, young orders before old, balance orders low to high.
Actually there exists two account classes, AccountA
and AccountB
. If you look their implementation, you'll notice that they are almost entirely identical, with one exception: The compare:
method. AccountA
objects access their own properties by method (getter), while AccountB
objects access their own properties by ivar. That's really the only difference! They both access the properties of the other object to compare to by getter (accessing it by ivar wouldn't be safe! What if the other object is a subclass and has overridden the getter?). Also note that accessing your own properties as ivars does not break encapsulation (the ivars are still not public).
The test setup is really simple: Create 1 Mio random accounts, add them to an array and sort that array. That's it. Of course, there are two arrays, one for AccountA
objects and one for AccountB
objects and both arrays are filled with identical accounts (same data source). We time how long it takes to sort the arrays.
Here's the output of several runs I did yesterday:
runTime 1: 4.827070, 5.002070, 5.014527, 5.019014, 5.123039
runTime 2: 3.835088, 3.804666, 3.792654, 3.796857, 3.871076
As you can see, sorting the array of AccountB
objects is always significant faster than sorting the array of AccountA
objects.
Whoever claims that runtime differences of up to 1.32 seconds make no difference should better never do UI programming. If I want to change the sorting order of a large table, for example, time differences like these do make a huge difference to the user (the difference between an acceptable and a sluggish UI).
Also in this case the sample code is the only real work performed here, but how often is your code just a small gear of a complicated clockwork? And if every gear slows down the whole process like this, what does that mean for the speed of the whole clockwork in the end? Especially if one work step depends on the output of another one, which means all the inefficiencies will sum up. Most inefficiencies are not a problem on their own, it's their sheer sum that becomes a problem to the whole process. And such a problem is nothing a profiler will easily show because a profiler is about finding critical hot spots, but none of these inefficiencies are hot spots on their own. The CPU time is just averagely spread among them, yet each of them only has such a tiny fraction of it, it seems a total waste of time to optimize it. And it's true, optimizing just one of them would help absolutely nothing, optimizing all of them can help dramatically.
And even if you don't think in terms of CPU time, because you believe wasting CPU time is totally acceptable, after all "it's for free", then what about server hosting costs caused by power consumption? What about battery runtime of mobile devices? If you would write the same mobile app twice (e.g. an own mobile web browser), once a version where all classes access their own properties only by getters and once where all classes access them only by ivars, using the first one constantly will definitely drain the battery much faster than using the second one, even though they are functional equivalent and to the user the second one would even probably even feel a bit swifter.
Now here's the code for your main.m
file (the code relies on ARC being enabled and be sure to use optimization when compiling to see the full effect):
#import <Foundation/Foundation.h>
typedef NS_ENUM(int, Gender) {
GenderMale,
GenderFemale
};
@interface AccountA : NSObject
@property (nonatomic) unsigned age;
@property (nonatomic) Gender gender;
@property (nonatomic) int64_t balance;
@property (nonatomic,nonnull,copy) NSString * name;
- (NSComparisonResult)compare:(nonnull AccountA *const)account;
- (nonnull instancetype)initWithName:(nonnull NSString *const)name
age:(const unsigned)age gender:(const Gender)gender
balance:(const int64_t)balance;
@end
@interface AccountB : NSObject
@property (nonatomic) unsigned age;
@property (nonatomic) Gender gender;
@property (nonatomic) int64_t balance;
@property (nonatomic,nonnull,copy) NSString * name;
- (NSComparisonResult)compare:(nonnull AccountB *const)account;
- (nonnull instancetype)initWithName:(nonnull NSString *const)name
age:(const unsigned)age gender:(const Gender)gender
balance:(const int64_t)balance;
@end
static
NSMutableArray * allAcocuntsA;
static
NSMutableArray * allAccountsB;
static
int64_t getRandom ( const uint64_t min, const uint64_t max ) {
assert(min <= max);
uint64_t rnd = arc4random(); // arc4random() returns a 32 bit value only
rnd = (rnd << 32) | arc4random();
rnd = rnd % ((max + 1) - min); // Trim it to range
return (rnd + min); // Lift it up to min value
}
static
void createAccounts ( const NSUInteger ammount ) {
NSArray *const maleNames = @[
@"Noah", @"Liam", @"Mason", @"Jacob", @"William",
@"Ethan", @"Michael", @"Alexander", @"James", @"Daniel"
];
NSArray *const femaleNames = @[
@"Emma", @"Olivia", @"Sophia", @"Isabella", @"Ava",
@"Mia", @"Emily", @"Abigail", @"Madison", @"Charlotte"
];
const NSUInteger nameCount = maleNames.count;
assert(maleNames.count == femaleNames.count); // Better be safe than sorry
allAcocuntsA = [NSMutableArray arrayWithCapacity:ammount];
allAccountsB = [NSMutableArray arrayWithCapacity:ammount];
for (uint64_t i = 0; i < ammount; i++) {
const Gender g = (getRandom(0, 1) == 0 ? GenderMale : GenderFemale);
const unsigned age = (unsigned)getRandom(18, 120);
const int64_t balance = (int64_t)getRandom(0, 200000000) - 100000000;
NSArray *const nameArray = (g == GenderMale ? maleNames : femaleNames);
const NSUInteger nameIndex = (NSUInteger)getRandom(0, nameCount - 1);
NSString *const name = nameArray[nameIndex];
AccountA *const accountA = [[AccountA alloc]
initWithName:name age:age gender:g balance:balance
];
AccountB *const accountB = [[AccountB alloc]
initWithName:name age:age gender:g balance:balance
];
[allAcocuntsA addObject:accountA];
[allAccountsB addObject:accountB];
}
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
@autoreleasepool {
NSUInteger ammount = 1000000; // 1 Million;
if (argc > 1) {
unsigned long long temp = 0;
if (1 == sscanf(argv[1], "%llu", &temp)) {
// NSUIntegerMax may just be UINT32_MAX!
ammount = (NSUInteger)MIN(temp, NSUIntegerMax);
}
}
createAccounts(ammount);
}
// Sort A and take time
const CFAbsoluteTime startTime1 = CFAbsoluteTimeGetCurrent();
@autoreleasepool {
[allAcocuntsA sortedArrayUsingSelector:@selector(compare:)];
}
const CFAbsoluteTime runTime1 = CFAbsoluteTimeGetCurrent() - startTime1;
// Sort B and take time
const CFAbsoluteTime startTime2 = CFAbsoluteTimeGetCurrent();
@autoreleasepool {
[allAccountsB sortedArrayUsingSelector:@selector(compare:)];
}
const CFAbsoluteTime runTime2 = CFAbsoluteTimeGetCurrent() - startTime2;
NSLog(@"runTime 1: %f", runTime1);
NSLog(@"runTime 2: %f", runTime2);
}
return 0;
}
@implementation AccountA
- (NSComparisonResult)compare:(nonnull AccountA *const)account {
// Sort by gender first! Females prior to males.
if (self.gender != account.gender) {
if (self.gender == GenderFemale) return NSOrderedAscending;
return NSOrderedDescending;
}
// Otherwise sort by name
if (![self.name isEqualToString:account.name]) {
return [self.name compare:account.name];
}
// Otherwise sort by age, young to old
if (self.age != account.age) {
if (self.age < account.age) return NSOrderedAscending;
return NSOrderedDescending;
}
// Last ressort, sort by balance, low to high
if (self.balance != account.balance) {
if (self.balance < account.balance) return NSOrderedAscending;
return NSOrderedDescending;
}
// If we get here, the are really equal!
return NSOrderedSame;
}
- (nonnull instancetype)initWithName:(nonnull NSString *const)name
age:(const unsigned)age gender:(const Gender)gender
balance:(const int64_t)balance
{
self = [super init];
assert(self); // We promissed to never return nil!
_age = age;
_gender = gender;
_balance = balance;
_name = [name copy];
return self;
}
@end
@implementation AccountB
- (NSComparisonResult)compare:(nonnull AccountA *const)account {
// Sort by gender first! Females prior to males.
if (_gender != account.gender) {
if (_gender == GenderFemale) return NSOrderedAscending;
return NSOrderedDescending;
}
// Otherwise sort by name
if (![_name isEqualToString:account.name]) {
return [_name compare:account.name];
}
// Otherwise sort by age, young to old
if (_age != account.age) {
if (_age < account.age) return NSOrderedAscending;
return NSOrderedDescending;
}
// Last ressort, sort by balance, low to high
if (_balance != account.balance) {
if (_balance < account.balance) return NSOrderedAscending;
return NSOrderedDescending;
}
// If we get here, the are really equal!
return NSOrderedSame;
}
- (nonnull instancetype)initWithName:(nonnull NSString *const)name
age:(const unsigned)age gender:(const Gender)gender
balance:(const int64_t)balance
{
self = [super init];
assert(self); // We promissed to never return nil!
_age = age;
_gender = gender;
_balance = balance;
_name = [name copy];
return self;
}
@end
The most important reason is the OOP concept of information hiding: If you expose everything via properties and thus make allow external objects to peek at another object's internals then you will make use of these internal and thus complicate changing the implementation.
The "minimal performance" gain can quickly sum up and then become a problem. I know from experience; I work on an app that really takes the iDevices to their limits and we thus need to avoid unnecessary method calls (of course only where reasonably possible). To aid with this goal, we're also avoiding the dot syntax since it makes it hard to see the number of method calls on first sight: for example, how many method calls does the expression self.image.size.width
trigger? By contrast, you can immediately tell with [[self image] size].width
.
Also, with correct ivar naming, KVO is possible without properties (IIRC, I'm not an KVO expert).
Semantics
@property
can express that ivars can't: nonatomic
and copy
.@property
can't:
@protected
: public on subclasses, private outside.@package
: public on frameworks on 64 bits, private outside. Same as @public
on 32 bits. See Apple's 64-bit Class and Instance Variable Access Control.id __strong *_objs
.Performance
Short story: ivars are faster, but it doesn't matter for most uses. nonatomic
properties don't use locks, but direct ivar is faster because it skips the accessors call. For details read the following email from lists.apple.com.
Subject: Re: when do you use properties vs. ivars? From: John McCall <email@hidden> Date: Sun, 17 Mar 2013 15:10:46 -0700
Properties affect performance in a lot of ways:
As already discussed, sending a message to do a load/store is slower than just doing the load/store inline.
Sending a message to do a load/store is also quite a bit more code that needs to be kept in i-cache: even if the getter/setter added zero extra instructions beyond just the load/store, there'd be a solid half-dozen extra instructions in the caller to set up the message send and handle the result.
Sending a message forces an entry for that selector to be kept in the method cache, and that memory generally sticks around in d-cache. This increases launch time, increases the static memory usage of your app, and makes context switches more painful. Since the method cache is specific to the dynamic class for an object, this problem increases the more you use KVO on it.
Sending a message forces all values in the function to be spilled to the stack (or kept in callee-save registers, which just means spilling at a different time).
Sending a message can have arbitrary side-effects and therefore
- forces the compiler to reset all of its assumptions about non-local memory
- cannot be hoisted, sunk, re-ordered, coalesced, or eliminated.
In ARC, the result of a message send will always get retained, either by the callee or the caller, even for +0 returns: even if the method doesn't retain/autorelease its result, the caller doesn't know that and has to try to take action to prevent the result from getting autoreleased. This can never be eliminated because message sends are not statically analyzable.
In ARC, because a setter method generally takes its argument at +0, there is no way to "transfer" a retain of that object (which, as discussed above, ARC usually has) into the ivar, so the value generally has to get retain/released twice.
None of this means that they're always bad, of course — there are a lot of good reasons to use properties. Just keep in mind that, like many other language features, they're not free.
John.
Properties vs. instance variables is a trade-off, in the end the choice comes down to the application.
Encapsulation/Information Hiding This is a Good Thing (TM) from a design perspective, narrow interfaces and minimal linkage is what makes software maintainable and understandable. It is pretty hard in Obj-C to hide anything, but instance variables declared in the implementation come as close as you'll get.
Performance While "premature optimisation" is a Bad Thing (TM), writing badly performing code just because you can is at least as bad. Its hard to argue against a method call being more expensive than a load or store, and in computational intensive code the cost soon adds up.
In a static language with properties, such as C#, calls to setters/getters can often be optimised away by the compiler. However Obj-C is dynamic and removing such calls is much harder.
Abstraction An argument against instance variables in Obj-C has traditionally been memory management. With MRC instance variables require calls to retain/release/autorelease to be spread throughout the code, properties (synthesized or not) keep the MRC code in one place - the principle of abstraction which is a Good Thing (TM). However with GC or ARC this argument goes away, so abstraction for memory management is no longer an argument against instance variables.
Properties expose your variables to other classes. If you just need a variable that is only relative to the class you're creating, use an instance variable. Here's a small example: the XML classes for parsing RSS and the like cycle through a bunch of delegate methods and such. It's practical to have an instance of NSMutableString to store the result of each different pass of the parse. There's no reason why an outside class would need to ever access or manipulate that string. So, you just declare it in the header or privately and access it throughout the class. Setting a property for it might only be useful to make sure there are no memory issues, using self.mutableString to invoke the getter/setters.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With