Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why memset called after calloc?

I've researched code of some library and noticed that calls to calloc there are followed by memset for block allocated by calloc. I've found this question with quite comprehensive answer on differences between calloc and malloc + memset and calling memset for just before allocated storage:

Why malloc+memset is slower than calloc?

What i still can't understand is why one would want to do so. What are benefits of this operations?

The code example from mentioned above library:

light_pcapng_file_info *light_create_default_file_info()
{
    light_pcapng_file_info *default_file_info = calloc(1, sizeof(light_pcapng_file_info));
    memset(default_file_info, 0, sizeof(light_pcapng_file_info));
    default_file_info->major_version = 1;
    return default_file_info;
}

The code of allocated structure(each array contains 32 elements):

typedef struct _light_pcapng_file_info {
    uint16_t major_version;
    uint16_t minor_version;
    char *file_comment;
    size_t file_comment_size;
    char *hardware_desc;
    size_t hardware_desc_size;
    char *os_desc;
    size_t os_desc_size;
    char *user_app_desc;
    size_t user_app_desc_size;
    size_t interface_block_count;
    uint16_t link_types[MAX_SUPPORTED_INTERFACE_BLOCKS];
    double timestamp_resolution[MAX_SUPPORTED_INTERFACE_BLOCKS];

} light_pcapng_file_info;

EDIT:

In addition to accepted answer i'd like to provide some info my colleague pointed me to. There was a bug in glibc which, sometimes, prevented calloc from zeroing out memory. Here's the link: https://bugzilla.redhat.com/show_bug.cgi?id=1293976

Actual bug report text in case link gets moved:

glibc: calloc() returns non-zero'ed memory

Description of problem:

At Facebook we had an app that started hanging and crashing weirdly when going from glibc-2.12-1.149.el6.x86_64 to glibc-2.12-1.163.el6.x86_64. Turns out this patch

glibc-rh1066724.patch

Introduced the problem.

You added the following bit to _int_malloc()

  /* There are no usable arenas.  Fall back to sysmalloc to get a chunk from
     mmap.  */
  if (__glibc_unlikely (av == NULL))
    {
      void *p = sYSMALLOc (nb, av);
      if (p != NULL)
       alloc_perturb (p, bytes);
      return p;
    }

But this isn't ok, alloc_perturb unconditionally memset's the front byte to 0xf, unlike upstream where it checks to see if perturb_byte is set. This needs to be changed to

if (p != NULL && && __builtin_expect(perturb_byte, 0))
   alloc_perturb (p, bytes);
return p;

The patch I've attached fixes the problem for me.

This problem is exacerbated by the fact that any sort of lock contention on the arena's results in us falling back on mmap()'ing a new chunk. This is because we check to see if the uncontended arena we check is corrupt, and if it is we loop through, and if we loop to the beginning we know we didn't find anything. Except if our initial arena isn't actually corrupt we'll still return NULL, so we fall back on this mmap() thing more often, which really makes things unstable.

Please get this fixed as soon as possible, I'd even go so far as to call it a possible security issue.

like image 785
toozyfuzzy Avatar asked Feb 07 '19 13:02

toozyfuzzy


People also ask

Does calloc use memset?

The short version: Always use calloc() instead of malloc()+memset() . In most cases, they will be the same. In some cases, calloc() will do less work because it can skip memset() entirely. In other cases, calloc() can even cheat and not allocate any memory!

Is memset same as malloc?

memset sets the bytes in a block of memory to a specific value. malloc allocates a block of memory.

Why is calloc called calloc?

The name "calloc" stands for contiguous allocation. The malloc() function allocates memory and leaves the memory uninitialized, whereas the calloc() function allocates memory and initializes all bits to zero.

Is it better to use malloc () or calloc ()?

malloc() has high time efficiency. calloc() has low time efficiency. 5. The memory block allocated by malloc() has a garbage value.


3 Answers

Calling memset() ensures that the OS actually does the virtual memory mapping. As noted in the answers on the question you linked, calloc() can be optimized so that the actual memory mapping is deferred.

The application might have reasons to not defer the actual creation of the virtual memory mapping - such as using the buffer to read from a very high-speed device, although in the case of using memset() to zero out the memory, using calloc() instead of malloc() does seem redundant.

like image 70
Andrew Henle Avatar answered Sep 22 '22 16:09

Andrew Henle


Nobody is perfect, that's all. Yes, memset to zero following a calloc is extravagant. If you want an explicit memset in order to guarantee you are in possession of the memory that you've asked for, then it should follow a malloc instead.

New code has about 20 bugs per 1,000 lines and the laws of probability imply that not all of them are weeded out. Plus this is not really a bug, as there's no ill-behaviour to be observed.

like image 35
Bathsheba Avatar answered Sep 22 '22 16:09

Bathsheba


I would call it a bug, since it's doing pointless work, calloc() is specified to return already-cleared memory so why clear it again? Perhaps a failed refactoring, when someone switched from malloc().

If the code is open source and/or in a repository you have access to, I would check the commit history for those lines and see what has been going on. With a bit of luck, there's a commit message that tells the motivation ...

like image 40
unwind Avatar answered Sep 22 '22 16:09

unwind