Working with C++20's concept
s I noticed that std::unique_ptr
appears to fail to satisfy the std::equality_comparable_with<std::nullptr_t,...>
concept. From std::unique_ptr
's definition, it is supposed to implement the following when in C++20:
template<class T1, class D1, class T2, class D2>
bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template <class T, class D>
bool operator==(const unique_ptr<T, D>& x, std::nullptr_t) noexcept;
This requirement should implement symmetric comparison with nullptr
-- which from my understanding is sufficient for satisfying equality_comparable_with
.
Curiously, this issue appears to be consistent on all the major compilers. The following code is rejected from Clang, GCC, and MSVC:
// fails on all three compilers
static_assert(std::equality_comparable_with<std::unique_ptr<int>,std::nullptr_t>);
Try Online
However the same assertion with std::shared_ptr
is accepted:
// succeeds on all three compilers
static_assert(std::equality_comparable_with<std::shared_ptr<int>,std::nullptr_t>);
Try Online
Unless I'm misunderstanding something, this appears to be a bug. My question is whether this is a coincidental bug in the three compiler implementations, or is this a defect in the C++20 standard?
Note: I'm tagging this language-lawyer in case this happens to be a defect.
TL;DR: std::equality_comparable_with<T, U>
requires that both T
and U
are convertible to the common reference of T
and U
. For the case of std::unique_ptr<T>
and std::nullptr_t
, this requires that std::unique_ptr<T>
is copy-constructible, which it is not.
Buckle in. This is quite the ride. Consider me nerd-sniped.
std::equality_comparable_with
requires:
template <class T, class U> concept equality_comparable_with = std::equality_comparable<T> && std::equality_comparable<U> && std::common_reference_with< const std::remove_reference_t<T>&, const std::remove_reference_t<U>&> && std::equality_comparable< std::common_reference_t< const std::remove_reference_t<T>&, const std::remove_reference_t<U>&>> && __WeaklyEqualityComparableWith<T, U>;
That's a mouthful. Breaking apart the concept into its parts, std::equality_comparable_with<std::unique_ptr<int>, std::nullptr_t>
fails for std::common_reference_with<const std::unique_ptr<int>&, const std::nullptr_t&>
:
<source>:6:20: note: constraints not satisfied In file included from <source>:1: /…/concepts:72:13: required for the satisfaction of 'convertible_to<_Tp, typename std::common_reference<_Tp1, _Tp2>::type>' [with _Tp = const std::unique_ptr<int, std::default_delete<int> >&; _Tp2 = const std::nullptr_t&; _Tp1 = const std::unique_ptr<int, std::default_delete<int> >&] /…/concepts:72:30: note: the expression 'is_convertible_v<_From, _To> [with _From = const std::unique_ptr<int, std::default_delete<int> >&; _To = std::unique_ptr<int, std::default_delete<int> >]' evaluated to 'false' 72 | concept convertible_to = is_convertible_v<_From, _To> | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
(edited for legibility) Compiler Explorer link.
std::common_reference_with
requires:
template < class T, class U > concept common_reference_with = std::same_as<std::common_reference_t<T, U>, std::common_reference_t<U, T>> && std::convertible_to<T, std::common_reference_t<T, U>> && std::convertible_to<U, std::common_reference_t<T, U>>;
std::common_reference_t<const std::unique_ptr<int>&, const std::nullptr_t&>
is std::unique_ptr<int>
(see compiler explorer link).
Putting this together, there is a transitive requirement that std::convertible_to<const std::unique_ptr<int>&, std::unique_ptr<int>>
, which is equivalent to requiring that std::unique_ptr<int>
is copy-constructible.
std::common_reference_t
not a reference?
Why is std::common_reference_t<const std::unique_ptr<T>&, const std::nullptr_t&> = std::unique_ptr<T>
instead of const std::unique_ptr<T>&
? The documentation for std::common_reference_t
for two types (sizeof...(T)
is two) says:
- If
T1
andT2
are both reference types, and the simple common reference typeS
ofT1
andT2
(as defined below) exists, then the member type type namesS
;- Otherwise, if
std::basic_common_reference<std::remove_cvref_t<T1>, std::remove_cvref_t<T2>, T1Q, T2Q>::type
exists, whereTiQ
is a unary alias template such thatTiQ<U>
isU
with the addition ofTi
's cv- and reference qualifiers, then the member type type names that type;- Otherwise, if
decltype(false? val<T1>() : val<T2>())
, where val is a function templatetemplate<class T> T val();
, is a valid type, then the member type type names that type;- Otherwise, if
std::common_type_t<T1, T2>
is a valid type, then the member type type names that type;- Otherwise, there is no member type.
const std::unique_ptr<T>&
and const std::nullptr_t&
don't have a simple common reference type, since the references are not immediately convertible to a common base type (i.e. false ? crefUPtr : crefNullptrT
is ill-formed). There is no std::basic_common_reference
specialization for std::unique_ptr<T>
. The third option also fails, but we trigger std::common_type_t<const std::unique_ptr<T>&, const std::nullptr_t&>
.
For std::common_type
, std::common_type<const std::unique_ptr<T>&, const std::nullptr_t&> = std::common_type<std::unique_ptr<T>, std::nullptr_t>
, because:
If applying
std::decay
to at least one ofT1
andT2
produces a different type, the member type names the same type asstd::common_type<std::decay<T1>::type, std::decay<T2>::type>::type
, if it exists; if not, there is no member type.
std::common_type<std::unique_ptr<T>, std::nullptr_t>
does in fact exist; it is std::unique_ptr<T>
. This is why the reference gets stripped.
This has turned into P2404, which proposes changes to std::equality_comparable_with
, std::totally_ordered_with
, and std::three_way_comparable_with
to support move-only types.
In Does `equality_comparable_with` need to require `common_reference`?, the justification given by T.C. (originally sourced from n3351 pages 15-16) for the common-reference requirements on equality_comparable_with
is:
[W]hat does it even mean for two values of different types to be equal? The design says that cross-type equality is defined by mapping them to the common (reference) type (this conversion is required to preserve the value).
Just requiring the ==
operations that might naively be expected of the concept doesn't work, because:
[I]t allows having
t == u
andt2 == u
butt != t2
So the common-reference requirements are there for mathematical soundness, simultaneously allowing for a possible implementation of:
using common_ref_t = std::common_reference_t<const Lhs&, const Rhs&>;
common_ref_t lhs = lhs_;
common_ref_t rhs = rhs_;
return lhs == rhs;
With the C++0X concepts that n3351 supported, this implementation would actually be used as a fallback if there was no heterogeneous operator==(T, U)
.
With C++20 concepts, we require a heterogeneous operator==(T, U)
to exist, so this implementation will never be used.
Note that n3351 expresses that this kind of heterogeneous equality is already an extension of equality, which is only rigorously mathematically defined within a single type. Indeed, when we write heterogeneous equality operations, we are pretending that the two types share a common super-type, with the operation happening inside that common type.
Perhaps the common-reference requirements for std::equality_comparable
are too strict. Importantly, the mathematical requirement is only that there exists a common supertype in which this lifted operator==
is an equality, but what the common reference requirements require is something stricter, additionally requiring:
std::common_reference_t
.Relaxing the first point is basically just providing an explicit customization point for std::equality_comparable_with
in which you could explicitly opt-in a pair of types to meet the concept. For the second point, mathematically, a "reference" is meaningless. As such, this second point can also be relaxed to allow the common supertype to be implicitly convertible from both types.
This is tricky to get right. Importantly, we actually only care that the common supertype exists, but we never actually need to use it in the code. As such, we do not need to worry about efficiency or even whether the implementation would be impossible when codifying a common supertype conversion.
This can be accomplished by changing the std::common_reference_with
part of equality_comparable_with
:
template <class T, class U>
concept equality_comparable_with =
__WeaklyEqualityComparableWith<T, U> &&
std::equality_comparable<T> &&
std::equality_comparable<U> &&
std::equality_comparable<
std::common_reference_t<
const std::remove_reference_t<T>&,
const std::remove_reference_t<U>&>> &&
__CommonSupertypeWith<T, U>;
template <class T, class U>
concept __CommonSupertypeWith =
std::same_as<
std::common_reference_t<
const std::remove_cvref_t<T>&,
const std::remove_cvref_t<U>&>,
std::common_reference_t<
const std::remove_cvref_t<U>&,
const std::remove_cvref_t<T>&>> &&
(std::convertible_to<const std::remove_cvref_t<T>&,
std::common_reference_t<
const std::remove_cvref_t<T>&,
const std::remove_cvref_t<U>&>> ||
std::convertible_to<std::remove_cvref_t<T>&&,
std::common_reference_t<
const std::remove_cvref_t<T>&,
const std::remove_cvref_t<U>&>>) &&
(std::convertible_to<const std::remove_cvref_t<U>&,
std::common_reference_t<
const std::remove_cvref_t<T>&,
const std::remove_cvref_t<U>&>> ||
std::convertible_to<std::remove_cvref_t<U>&&,
std::common_reference_t<
const std::remove_cvref_t<T>&,
const std::remove_cvref_t<U>&>>);
In particular, the change is changing common_reference_with
to this hypothetical __CommonSupertypeWith
where __CommonSupertypeWith
differs by allowing for std::common_reference_t<T, U>
to produce a reference-stripped version of T
or U
and also by trying both C(T&&)
and C(const T&)
to create the common reference. For more details, see P2404.
std::equality_comparable_with
before this gets merged into the standard?
For all of the uses of std::equality_comparable_with
(or any of the other *_with
concepts) in the standard library, there is helpfully a predicate overload which you can pass a function to. That means that you can just pass std::equal_to()
to the predicate overload and get the desired behavior (not std::ranges::equal_to
, which is constrained, but the unconstrained std::equal_to
).
This doesn't mean that it would be a good idea to not fix std::equality_comparable_with
, however.
std::equality_comparable_with
?
The common-reference requirements use std::common_reference_t
, which has a customization point of std::basic_common_reference
, for the purpose of:
The class template
basic_common_reference
is a customization point that allows users to influence the result ofcommon_reference
for user-defined types (typically proxy references).
It is a horrible hack, but if we write a proxy reference that supports both types we want to compare, we can specialize std::basic_common_reference
for our types, enabling our types to meet std::equality_comparable_with
. See also How can I tell the compiler that MyCustomType is equality_comparable_with SomeOtherType? . If you choose to do this, beware; std::common_reference_t
is not only used by std::equality_comparable_with
or the other comparison_relation_with
concepts, you risk causing cascading problems down the road. It is best if you ensure that the common reference is actually a common reference, e.g.:
template <typename T>
class custom_vector { ... };
template <typename T>
class custom_vector_ref { ... };
custom_vector_ref<T>
could be a good option for a common reference between custom_vector<T>
and custom_vector_ref<T>
, or possibly even between custom_vector<T>
and std::array<T, N>
. Tread carefully.
std::equality_comparable_with
?
You can't. Specializing std::basic_common_reference
for types you don't own (either std::
types or some third-party library) is at best bad practice and at worst undefined behavior. The safest choice would be to use a proxy type you own that you can compare through or else write your own extension of std::equality_comparable_with
that has an explicit customization point for your custom spelling of equality.
Mathematically, equality is an equivalence relation. However, equivalence relations are defined over a single set. So how can we define an equivalence relation between two sets A
and B
? Simply put, we instead define the equivalence relation over C = A∪B
. That is to say, we take a common supertype of A
and B
and define the equivalence relation over this supertype.
This means that our relation c1 == c2
must be defined no matter where c1
and c2
come from, so we must have a1 == a2
, a == b
, and b1 == b2
(where ai
is from A
and bi
is from B
). Translating to C++, this means that all of operator==(A, A)
, operator==(A, B)
, operator==(B, B)
, and operator==(C, C)
must be part of the same equality.
This is why iterator
/sentinel
s do not meet std::equality_comparable_with
: while operator==(iterator, sentinel)
may actually be part of some equivalence relation, it is not part of the same equivalence relation as operator==(iterator, iterator)
(otherwise iterator equality would only answer the question of "Are either both iterators at the end or both iterators not at the end?").
It is actually quite easy to write an operator==
that is not actually equality, because you must remember that the heterogeneous equality is not the single operator==(A, B)
you are writing, but is instead four different operator==
s that must all be coheisve.
operator==
s; why can't we just have operator==(C, C)
and operator==(A, B)
for optimization purposes?
This is a valid model, and we could do this. However, C++ is not a platonic reality. Although concepts try their hardest to only accept types that truly meet the semantic requirements, it cannot actually acheive this goal. As such, if we were to only check operator==(A, B)
and operator==(C, C)
, we run the risk that operator==(A, A)
and operator==(B, B)
do something different. Besides, if we can have operator==(C, C)
, then this means that it is trivial to write operator==(A, A)
and operator==(B, B)
based on what we have in operator==(C, C)
. That is to say, the harm of requiring operator==(A, A)
and operator==(B, B)
is quite low, and in return we get a higher confidence that we actually have an equality.
There are some circumstances where this runs into rough edges, however; see P2405.
operator==(A, B)
is an actual equality? I'm never going to actually use the operator==(A, A)
or operator==(B, B)
anyway; I only cared about being able to do the cross-type comparison.
Actually, a model where we require operator==(A, B)
is an actual equality would probably work. Under this model, we would have std::equality_comparable_with<iterator, sentinel>
, but what precisely that means in all known contexts could be hammered out. However, there was a reason why this is not the direction the standard went with, and before one can understand if or how to change it, they must first understand why the standard's model was chosen.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With