Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why do we use fully-connected layer at the end of CNN?

I searched for the reason a lot but I didn't get it clear, May someone explain it in some more detail please?

like image 416
Ahmed Salah Avatar asked Feb 18 '17 15:02

Ahmed Salah


4 Answers

In theory you do not have to attach a fully connected layer, you could have a full stack of convolutions till the very end, as long as (due to custom sizes/paddings) you end up with the correct number of output neurons (usually number of classes).

So why people usually do not do that? If one goes through the math, it will become visible that each output neuron (thus - prediction wrt. to some class) depends only on the subset of the input dimensions (pixels). This would be something among the lines of a model, which only decides whether an image is an element of class 1 depending on first few "columns" (or, depending on the architecture, rows, or some patch of the image), then whether this is class 2 on a few next columns (maybe overlapping), ..., and finally some class K depending on a few last columns. Usually data does not have this characteristic, you cannot classify image of the cat based on a few first columns and ignoring the rest.

However, if you introduce fully connected layer, you provide your model with ability to mix signals, since every single neuron has a connection to every single one in the next layer, now there is a flow of information between each input dimension (pixel location) and each output class, thus the decision is based truly on the whole image.

So intuitively you can think about these operations in terms of information flow. Convolutions are local operations, pooling are local operations. Fully connected layers are global (they can introduce any kind of dependence). This is also why convolutions work so well in domains like image analysis - due to their local nature they are much easier to train, even though mathematically they are just a subset of what fully connected layers can represent.

note I am considering here typical use of CNNs, where kernels are small. In general one can even think of MLP as a CNN, where the kernel is of the size of the whole input with specific spacing/padding. However these are just corner cases, which are not really encountered in practise, and not really affecting the reasoning, since then they end up being MLPs. The whole point here is simple - to introduce global relations, if one can do it by using CNNs in a specific manner - then MLPs are not needed. MLPs are just one way of introducing this dependence.

like image 171
lejlot Avatar answered Nov 15 '22 10:11

lejlot


Every fully connected (FC) layer has an equivalent convolutional layer (but not vice versa). Hence it is not necessary to add FC layers. They can always be replaced by convolutional layers (+ reshaping). See details.

Why do we use FC layers then?

Because (1) we are used to it (2) it is simpler. (1) is probably the reason for (2). For example, you would need to adjust the loss fuctions / the shape of the labels / add a reshape add the end if you used a convolutional layer instead of a FC layer.

like image 35
Martin Thoma Avatar answered Nov 15 '22 10:11

Martin Thoma


I found this answer by Anil-Sharma on Quora helpful.

We can divide the whole network (for classification) into two parts:

  • Feature extraction: In the conventional classification algorithms, like SVMs, we used to extract features from the data to make the classification work. The convolutional layers are serving the same purpose of feature extraction. CNNs capture better representation of data and hence we don’t need to do feature engineering.

  • Classification: After feature extraction we need to classify the data into various classes, this can be done using a fully connected (FC) neural network. In place of fully connected layers, we can also use a conventional classifier like SVM. But we generally end up adding FC layers to make the model end-to-end trainable.

like image 36
rocksyne Avatar answered Nov 15 '22 10:11

rocksyne


The CNN gives you a representation of the input image. To learn the sample classes, you should use a classifier (such as logistic regression, SVM, etc.) that learns the relationship between the learned features and the sample classes. Fully-connected layer is also a linear classifier such as logistic regression which is used for this reason.

like image 35
Hossein Avatar answered Nov 15 '22 12:11

Hossein