Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why do we need immutable class?

I am unable to get what are the scenarios where we need an immutable class.
Have you ever faced any such requirement? or can you please give us any real example where we should use this pattern.

like image 822
Rakesh Juyal Avatar asked Sep 22 '10 13:09

Rakesh Juyal


People also ask

Why do we need immutable in Java?

Immutable objects are particularly useful in concurrent applications. Since they cannot change state, they cannot be corrupted by thread interference or observed in an inconsistent state.

What is the point of immutable?

Immutability means that change is not done on the same object,structure, but change is represented in new one. And this is because reference represents value not only memory pointer. Every change creates new value and doesn't touch the old one. Such clear rules gives back the trust and code predictability.


4 Answers

The other answers seem too focused on explaining why immutability is good. It is very good and I use it whenever possible. However, that is not your question. I'll take your question point by point to try to make sure you're getting the answers and examples you need.

I am unable to get what are the scenarios where we need an immutable class.

"Need" is a relative term here. Immutable classes are a design pattern that, like any paradigm/pattern/tool, is there to make constructing software easier. Similarly, plenty of code was written before the OO paradigm came along, but count me among the programmers that "need" OO. Immutable classes, like OO, aren't strictly needed, but I going to act like I need them.

Have you ever faced any such requirement?

If you aren't looking at the objects in the problem domain with the right perspective, you may not see a requirement for an immutable object. It might be easy to think that a problem domain doesn't require any immutable classes if you're not familiar when to use them advantageously.

I often use immutable classes where I think of a given object in my problem domain as a value or fixed instance. This notion is sometimes dependent on perspective or viewpoint, but ideally, it will be easy to switch into the right perspective to identify good candidate objects.

You can get a better sense of where immutable objects are really useful (if not strictly necessary) by making sure you read up on various books/online articles to develop a good sense of how to think about immutable classes. One good article to get you started is Java theory and practice: To mutate or not to mutate?

I'll try to give a couple of examples below of how one can see objects in different perspectives (mutable vs immutable) to clarify what I mean by perspective.

... can you please give us any real example where we should use this pattern.

Since you asked for real examples I'll give you some, but first, let's start with some classic examples.

Classic Value Objects

Strings and integers are often thought of as values. Therefore it's not surprising to find that String class and the Integer wrapper class (as well as the other wrapper classes) are immutable in Java. A color is usually thought of as a value, thus the immutable Color class.

Counterexample

In contrast, a car is not usually thought of as a value object. Modeling a car usually means creating a class that has changing state (odometer, speed, fuel level, etc). However, there are some domains where it car may be a value object. For example, a car (or specifically a car model) might be thought of as a value object in an app to look up the proper motor oil for a given vehicle.

Playing Cards

Ever write a playing card program? I did. I could have represented a playing card as a mutable object with a mutable suit and rank. A draw-poker hand could be 5 fixed instances where replacing the 5th card in my hand would mean mutating the 5th playing card instance into a new card by changing its suit and rank ivars.

However, I tend to think of a playing card as an immutable object that has a fixed unchanging suit and rank once created. My draw poker hand would be 5 instances and replacing a card in my hand would involve discarding one of those instance and adding a new random instance to my hand.

Map Projection

One last example is when I worked on some map code where the map could display itself in various projections. The original code had the map use a fixed, but mutatable projection instance (like the mutable playing card above). Changing the map projection meant mutating the map's projection instance's ivars (projection type, center point, zoom, etc).

However, I felt the design was simpler if I thought of a projection as an immutable value or fixed instance. Changing the map projection meant having the map reference a different projection instance rather than mutating the map's fixed projection instance. This also made it simpler to capture named projections such as MERCATOR_WORLD_VIEW.

like image 163
Bert F Avatar answered Oct 21 '22 04:10

Bert F


Immutable classes are in general much simpler to design, implement and use correctly. An example is String: the implementation of java.lang.String is significantly simpler than that of std::string in C++, mostly due to its immutability.

One particular area where immutability makes an especially big difference is concurrency: immutable objects can safely be shared among multiple threads, whereas mutable objects must be made thread-safe via careful design and implementation - usually this is far from a trivial task.

Update: Effective Java 2nd Edition tackles this issue in detail - see Item 15: Minimize mutability.

See also these related posts:

  • non-technical benefits of having string-type immutable
  • Downsides to immutable objects in Java?
like image 33
Péter Török Avatar answered Oct 21 '22 04:10

Péter Török


Effective Java by Joshua Bloch outlines several reasons to write immutable classes:

  • Simplicity - each class is in one state only
  • Thread Safe - because the state cannot be changed, no synchronization is required
  • Writing in an immutable style can lead to more robust code. Imagine if Strings weren't immutable; Any getter methods that returned a String would require the implementation to create a defensive copy before the String was returned - otherwise a client may accidentally or maliciously break that state of the object.

In general it is good practise to make an object immutable unless there are severe performance problems as a result. In such circumstances, mutable builder objects can be used to build immutable objects e.g. StringBuilder

like image 35
Tarski Avatar answered Oct 21 '22 02:10

Tarski


Hashmaps are a classic example. It's imperative that the key to a map be immutable. If the key is not immutable, and you change a value on the key such that hashCode() would result in a new value, the map is now broken (a key is now in the wrong location in the hash table.).

like image 20
Kirk Woll Avatar answered Oct 21 '22 04:10

Kirk Woll