I have huge amount of yelp data and I have to classify the reviews into 8 different categories.
Categories
Cleanliness
Customer Service
Parking
Billing
Food Pricing
Food Quality
Waiting time
Unspecified
Reviews contains multiple categories so I have used multilable classification. But I am confuse how I can handle the positive/negative . Example review may be for positive for food quality but negative for customer service. Ex- food taste was very good but staff behaviour was very bad. so review contains positive food quality but negative Customer service
How can I handle this case? Should I do sentiment analysis before classification? Please help me
I think your data is very similar to Restaurants reviews. It contains around 100 reviews, with varied number of aspect terms in each (More information). So you can use Aspect-Based Sentiment Analysis like this:
1-Aspect term Extraction
Extracting the aspect terms from the reviews.
2-Aspect Polarity Detection
For a given set of aspect terms within a sentence, determine whether the polarity of each aspect term is positive, negative.
3-Identify the aspect categories
Given a predefined set of aspect categories (e.g., food quality, Customer service), identify the aspect categories discussed in a given sentence.
4-Determine the polarity
Given a set of pre-identified aspect categories (e.g., food quality, Customer service), determine the polarity (positive, negative) of each aspect category.
Please see this for more information about similar project.
I hope this can help you.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With