Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Where are static variables stored in C and C++?

Where your statics go depends on whether they are zero-initialized. zero-initialized static data goes in .BSS (Block Started by Symbol), non-zero-initialized data goes in .DATA


When a program is loaded into memory, it’s organized into different segments. One of the segment is DATA segment. The Data segment is further sub-divided into two parts:

Initialized data segment: All the global, static and constant data are stored here.
Uninitialized data segment(BSS): All the uninitialized data are stored in this segment.

Here is a diagram to explain this concept:

enter image description here


here is very good link explaining these concepts:

http://www.inf.udec.cl/~leo/teoX.pdf


In fact, a variable is tuple (storage, scope, type, address, value):

storage     :   where is it stored, for example data, stack, heap...
scope       :   who can see us, for example global, local...
type        :   what is our type, for example int, int*...
address     :   where are we located
value       :   what is our value

Local scope could mean local to either the translational unit (source file), the function or the block depending on where its defined. To make variable visible to more than one function, it definitely has to be in either DATA or the BSS area (depending on whether its initialized explicitly or not, respectively). Its then scoped accordingly to either all function(s) or function(s) within source file.


The storage location of the data will be implementation dependent.

However, the meaning of static is "internal linkage". Thus, the symbol is internal to the compilation unit (foo.c, bar.c) and cannot be referenced outside that compilation unit. So, there can be no name collisions.


in the "global and static" area :)

There are several memory areas in C++:

  • heap
  • free store
  • stack
  • global & static
  • const

See here for a detailed answer to your question:

The following summarizes a C++ program's major distinct memory areas. Note that some of the names (e.g., "heap") do not appear as such in the draft [standard].

     Memory Area     Characteristics and Object Lifetimes
     --------------  ------------------------------------------------

     Const Data      The const data area stores string literals and
                     other data whose values are known at compile
                     time.  No objects of class type can exist in
                     this area.  All data in this area is available
                     during the entire lifetime of the program.

                     Further, all of this data is read-only, and the
                     results of trying to modify it are undefined.
                     This is in part because even the underlying
                     storage format is subject to arbitrary
                     optimization by the implementation.  For
                     example, a particular compiler may store string
                     literals in overlapping objects if it wants to.


     Stack           The stack stores automatic variables. Typically
                     allocation is much faster than for dynamic
                     storage (heap or free store) because a memory
                     allocation involves only pointer increment
                     rather than more complex management.  Objects
                     are constructed immediately after memory is
                     allocated and destroyed immediately before
                     memory is deallocated, so there is no
                     opportunity for programmers to directly
                     manipulate allocated but uninitialized stack
                     space (barring willful tampering using explicit
                     dtors and placement new).


     Free Store      The free store is one of the two dynamic memory
                     areas, allocated/freed by new/delete.  Object
                     lifetime can be less than the time the storage
                     is allocated; that is, free store objects can
                     have memory allocated without being immediately
                     initialized, and can be destroyed without the
                     memory being immediately deallocated.  During
                     the period when the storage is allocated but
                     outside the object's lifetime, the storage may
                     be accessed and manipulated through a void* but
                     none of the proto-object's nonstatic members or
                     member functions may be accessed, have their
                     addresses taken, or be otherwise manipulated.


     Heap            The heap is the other dynamic memory area,
                     allocated/freed by malloc/free and their
                     variants.  Note that while the default global
                     new and delete might be implemented in terms of
                     malloc and free by a particular compiler, the
                     heap is not the same as free store and memory
                     allocated in one area cannot be safely
                     deallocated in the other. Memory allocated from
                     the heap can be used for objects of class type
                     by placement-new construction and explicit
                     destruction.  If so used, the notes about free
                     store object lifetime apply similarly here.


     Global/Static   Global or static variables and objects have
                     their storage allocated at program startup, but
                     may not be initialized until after the program
                     has begun executing.  For instance, a static
                     variable in a function is initialized only the
                     first time program execution passes through its
                     definition.  The order of initialization of
                     global variables across translation units is not
                     defined, and special care is needed to manage
                     dependencies between global objects (including
                     class statics).  As always, uninitialized proto-
                     objects' storage may be accessed and manipulated
                     through a void* but no nonstatic members or
                     member functions may be used or referenced
                     outside the object's actual lifetime.