I can see from the documentation that rlang::enquo()
and rlang::quo()
are used in different contexts. Hence, I used rlang::enysm()
recently within a function declaration (see below). However, wrapped inside another SE function call, I got an unexpected error which I guess is related to lazy evaluation (and which goes away if I force(x)
in f_enysm()
). But it seems as I can also work around that by simply using sym(x)
instead of ensym(x)
since x
is a string that does not convey any information about environments (as opposed to quosures).
Is that safe?
If yes, I don't see when I should prefer ensym()
over sym
and the proposed use seems inconsistent with the terminology used with quo()
/ enquo()
, expr()
/ enexpr()
etc.
library(rlang)
f_ensym <- function(data, x, fun) {
x <- fun(x)
head(dplyr::arrange(data, !!x))
}
f_ensym(mtcars, "cyl", sym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
f_sym <- function(data, x) {
x <- sym(x)
head(dplyr::arrange(data, !!x))
}
g <- function(data, x, fun) {
fun(data, x)
}
g(mtcars, "cyl", f_ensym)
#> Error in fun(x): argument "fun" is missing, with no default
g(mtcars, "cyl", f_sym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
# If I remove one level, I don't get the problematic behaviour.
f <- function(data, x, fun) {
x <- fun(x)
head(dplyr::arrange(data, !!x))
}
f(mtcars, "cyl", sym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
f(mtcars, "cyl", ensym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Also, if I remove the intermediate function f_sym()
and f_enysm()
and make a direct call to f()
, I don't get the probelmatic behaviour.
f <- function(data, x, fun) {
x <- fun(x)
head(dplyr::arrange(data, !!x))
}
f(mtcars, "cyl", sym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
f(mtcars, "cyl", ensym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
The ensym
can take both quoted and unquoted arguments
f_ensym(mtcars, "cyl")
f_ensym(mtcars, cyl)
Based on the updated example in the OP's post, the while the sym
takes the string object g
is only taking three argument and the fun
part of it is 'f_ensymwhich also have a
fun` that is not being passed into. We can have one more argument for that
g <- function(data, x, fun, fun2) {
fun(data, x, fun2)
}
g(mtcars, "cyl", f_ensym, sym)
# mpg cyl disp hp drat wt qsec vs am gear carb
#1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With