Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

What's the difference between code written for a desktop machine and a supercomputer?

Hypothetically speaking, if my scientific work was leading toward the development of functions/modules/subroutines (on a desktop), what would I need to know to incorporate it into a large-scale simulation to be run on a supercomputer (which might simulate molecules, fluids, reactions, and so on)?

My impression is that it has to do with taking advantage of certain libraries (e.g., BLAS, LAPLACK) where possible, revising algorithms (reducing iteration), profiling, parallelizing, considering memory-hard disk-processor use/access... I am aware of the adage, "want to optimize your code? don't do it", but if one were interested in learning about writing efficient code, what references might be available?

I think this question is language agnostic, but since many number-crunching packages for biomolecular simulation, climate modeling, etc. are written in some version of Fortran, this language would probably be my target of interest (and I have programmed rather extensively in Fortran 77).

like image 536
hatmatrix Avatar asked Dec 03 '22 01:12

hatmatrix


1 Answers

Profiling is a must at any level of machinery. In common usage, I've found that scaling to larger and larger grids requires a better understanding of the grid software and the topology of the grid. In that sense, everything you learn about optimizing for one machine is still applicable, but understanding the grid software gets you additional mileage. Hadoop is one of the most popular and widespread grid systems, so learning about the scheduler options, interfaces (APIs and web interfaces), and other aspects of usage will help. Although you may not use Hadoop for a given supercomputer, it is one of the less painful methods for learning about distributed computing. For parallel computing, you may pursue MPI and other systems.

Additionally, learning to parallelize code on a single machine, across multiple cores or processors, is something you can begin learning on a desktop machine.

Recommendations:

  1. Learn to optimize code on a single machine:
    • Learn profiling
    • Learn to use optimized libraries (after profiling: so that you see the speedup)
    • Be sure you know algorithms and data structures very well (*)
  2. Learn to do embarrassingly parallel programming on multiple core machines.
    • Later: consider multithreaded programming. It's harder and may not pay off for your problem.
  3. Learn about basic grid software for distributed processing
  4. Learn about tools for parallel processing on a grid
  5. Learn to program for alternative hardware, e.g. GPUs, various specialized computing systems.

This is language agnostic. I have had to learn the same sequence in multiple languages and multiple HPC systems. At each step, take a simpler route to learn some of the infrastructure and tools; e.g. learn multicore before multithreaded, distributed before parallel, so that you can see what fits for the hardware and problem, and what doesn't.

Some of the steps may be reordered depending on local computing practices, established codebases, and mentors. If you have a large GPU or MPI library in place, then, by all means, learn that rather than foist Hadoop onto your collaborators.

(*) The reason to know algorithms very well is that as soon as your code is running on a grid, others will see it. When it is hogging up the system, they will want to know what you're doing. If you are running a process that is polynomial and should be constant, you may find yourself mocked. Others with more domain expertise may help you find good approximations for NP-hard problems, but you should know that the concept exists.

like image 60
Iterator Avatar answered May 16 '23 08:05

Iterator