I have the following while
-loop
uint32_t x = 0;
while(x*x < STOP_CONDITION) {
if(CHECK_CONDITION) x++
// Do other stuff that modifies CHECK_CONDITION
}
The STOP_CONDITION
is constant at run-time, but not at compile time. Is there are more efficient way to maintain x*x
or do I really need to recompute it every time?
Note: According to the benchmark below, this code runs about 1 -- 2% slower than this option. Please read the disclaimer included at the bottom!
In addition to Tamas Ionut's answer, if you want to maintain STOP_CONDITION
as the actual stop condition and avoid the square root calculation, you could update the square using the mathematical identity
(x + 1)² = x² + 2x + 1
whenever you change x
:
uint32_t x = 0;
unit32_t xSquare = 0;
while(xSquare < STOP_CONDITION) {
if(CHECK_CONDITION) {
xSquare += 2 * x + 1;
x++;
}
// Do other stuff that modifies CHECK_CONDITION
}
Since the 2*x + 1
is just a bit shift and an increment, the compiler should be able to optimize this fairly well.
Disclaimer: Since you asked "how can I optimize this code" I answered with one particular way to possibly make it faster. Whether the double + increment is actually faster than a single integer multiplication should be tested in practice. Whether you should optimize the code is a different question. I assume you have already benchmarked the loop and found it to be a bottleneck, or that you have a theoretical interest in the question. If you are writing production code that you wish to optimize, first measure the performance and then optimize where needed (which is probably not the x*x
in this loop).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With