In the early days of C prior to standardization, implementations had a variety of ways of handling exceptional and semi-exceptional cases of various actions. Some of them would trigger traps which could cause random code execution if not configured first. Because the behavior of such traps was outside the scope of the C standard (and may in some cases be controlled by an operating system outside the control of the running program), and to avoid requiring that compilers not allow code which had been relying upon such traps to keep on doing so, the behavior of actions that could cause such traps was left entirely up to the discretion of the compiler/platform.
By the end of the 1990s, although not required to do so by the C standard, every mainstream compiler had adopted common behaviors for many of these situations; using such behaviors would allow improvements with respect to code speed, size, and readability.
Since the "obvious" ways of requesting the following operations are no longer supported, how should one go about replacing them in such a way as to not impede readability nor adversely affect code generation when using older compilers? For purposes of descriptions, assume int
is 32-bit, ui
is a unsigned int, si
is signed int, and b
is unsigned char.
Given ui
and b
, compute ui << b
for b==0..31, or a value which may arbitrarily behave as ui << (b & 31)
or zero for values 32..255. Note that if the left-hand operand is zero whenever the right-hand operand exceeds 31, both behaviors will be identical.
For code that only needs to run on a processor that yields zero when right-shifting or left-shifting by an amount from 32 to 255, compute ui << b
for b==0..31 and 0 for b==32..255. While a compiler might be able to optimize out conditional logic designed to skip the shift for values 32..255 (so code would simply perform the shift that will yield the correct behavior), I don't know any way to formulate such conditional logic that would guarantee the compiler won't generate needless code for it.
As with 1 and 2, but for right shifts.
Given si
and b
such that b0..30 and si*(1<<b)
would not overflow, compute si*(1<<b)
. Note that use of the multiplication operator would grossly impair performance on many older compilers, but if the purpose of the shift is to scale a signed value, casting to unsigned in cases where the operand would remain negative throughout shifting feels wrong.
Given various integer values, perform additions, subtractions, multiplications, and shifts, such fashion that if there are no overflows the results will be correct, and if there are overflows the code will either produce values whose upper bits behave in non-trapping and non-UB but otherwise indeterminate fashion or will trap in recognizable platform-defined fashion (and on platforms which don't support traps, would simply yield indeterminate value).
Given a pointer to an allocated region and some pointers to things within it, use realloc
to change the allocation size and adjust the aforementioned pointers to match, while avoiding extra work in cases where realloc
returns the original block. Not necessarily possible on all platforms, but 1990s mainstream platforms would all allow code to determine if realloc
caused things to move, and determine the what the offset of a pointer into a dead object used to be by subtracting the former base address of that object (note that the adjustment would need to be done by computing the offset associated with each dead pointer, and then adding it the new pointer, rather than by trying to compute the "difference" between old and new pointers--something that would legitimately fail on many segmented architectures).
Do "hyper-modern" compilers provide any good replacements for the above which would not degrade at least one of code size, speed, or readability, while offering no improvements in any of the others? From what I can tell, not only could 99% of compilers throughout the 1990s do all of the above, but for each example one would have been able to write the code the same way on nearly all of them. A few compilers might have tried to optimize left-shifts and right-shifts with an unguarded jump table, but that's the only case I can think of where a 1990s compiler for a 1990s platform would have any problem with the "obvious" way of coding any of the above. If that hyper-modern compilers have ceased to support the classic forms, what do they offer as replacements?
Modern Standard C is specified in such a way that it can be guaranteed to be portable if and only if you write your code with no more expectations about the underlying hardware it will run on than are given by the C abstract machine the standard implicitly and explicitly describes.
You can still write for a specific compiler that has specific behaviour at a given optimization level for a given target CPU and architecture, but then do not expect any other compiler (modern or otherwise, or even a minor revision of the one you wrote for) to go out of its way to try to intuit your expectations if your code violates conditions where the Standard says that it is unreasonable to expect any well defined implementation agnostic behaviour.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With