Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

What is the use of verbose in Keras while validating the model?

People also ask

What is the use of verbose?

In computing, Verbose mode is an option available in many computer operating systems and programming languages that provides additional details as to what the computer is doing and what drivers and software it is loading during startup or in programming it would produce detailed output for diagnostic purposes thus ...

What is the use of verbose in machine learning?

Verbose is a general programming term for produce lots of logging output. You can think of it as asking the program to "tell me everything about what you are doing all the time". Just set it to true and see what happens.

What is the use of verbose in Python?

VERBOSE : This flag allows you to write regular expressions that look nicer and are more readable by allowing you to visually separate logical sections of the pattern and add comments.

What is verbosity in machine learning?

Verbosity in keyword arguments usually means showing more 'wordy' information for the task. In this case, for machine learning, by setting verbose to a higher number ( 2 vs 1 ), you may see more information about the tree building process.


Check documentation for model.fit here.

By setting verbose 0, 1 or 2 you just say how do you want to 'see' the training progress for each epoch.

verbose=0 will show you nothing (silent)

verbose=1 will show you an animated progress bar like this:

progres_bar

verbose=2 will just mention the number of epoch like this:

enter image description here


verbose: Integer. 0, 1, or 2. Verbosity mode.

Verbose=0 (silent)

Verbose=1 (progress bar)

Train on 186219 samples, validate on 20691 samples
Epoch 1/2
186219/186219 [==============================] - 85s 455us/step - loss: 0.5815 - acc: 
0.7728 - val_loss: 0.4917 - val_acc: 0.8029
Train on 186219 samples, validate on 20691 samples
Epoch 2/2
186219/186219 [==============================] - 84s 451us/step - loss: 0.4921 - acc: 
0.8071 - val_loss: 0.4617 - val_acc: 0.8168

Verbose=2 (one line per epoch)

Train on 186219 samples, validate on 20691 samples
Epoch 1/1
 - 88s - loss: 0.5746 - acc: 0.7753 - val_loss: 0.4816 - val_acc: 0.8075
Train on 186219 samples, validate on 20691 samples
Epoch 1/1
 - 88s - loss: 0.4880 - acc: 0.8076 - val_loss: 0.5199 - val_acc: 0.8046

For verbose > 0, fit method logs:

  • loss: value of loss function for your training data
  • acc: accuracy value for your training data.

Note: If regularization mechanisms are used, they are turned on to avoid overfitting.

if validation_data or validation_split arguments are not empty, fit method logs:

  • val_loss: value of loss function for your validation data
  • val_acc: accuracy value for your validation data

Note: Regularization mechanisms are turned off at testing time because we are using all the capabilities of the network.

For example, using verbose while training the model helps to detect overfitting which occurs if your acc keeps improving while your val_acc gets worse.


By default verbose = 1,

verbose = 1, which includes both progress bar and one line per epoch

verbose = 0, means silent

verbose = 2, one line per epoch i.e. epoch no./total no. of epochs


verbose is the choice that how you want to see the output of your Nural Network while it's training. If you set verbose = 0, It will show nothing

If you set verbose = 1, It will show the output like this Epoch 1/200 55/55[==============================] - 10s 307ms/step - loss: 0.56 - accuracy: 0.4949

If you set verbose = 2, The output will be like Epoch 1/200 Epoch 2/200 Epoch 3/200


The order of details provided with verbose flag are as

Less details.... More details

0 < 2 < 1

Default is 1

For production environment, 2 is recommended