Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

What is the difference between Serializable and Externalizable in Java?

People also ask

What is Externalizable in Java?

Interface Externalizable The writeExternal and readExternal methods of the Externalizable interface are implemented by a class to give the class complete control over the format and contents of the stream for an object and its supertypes. These methods must explicitly coordinate with the supertype to save its state.

Is Externalizable and serializable a marker interface?

Differences between Externalizable vs Serializable Serializable is a marker interface i.e. does not contain any method. Externalizable interface contains two methods writeExternal() and readExternal() which implementing classes MUST override.

What is the difference between serialization and deserialization?

Serialization is a mechanism of converting the state of an object into a byte stream. Deserialization is the reverse process where the byte stream is used to recreate the actual Java object in memory. This mechanism is used to persist the object. The byte stream created is platform independent.

What is the difference between serialization and marshaling?

Marshaling and serialization are loosely synonymous in the context of remote procedure call, but semantically different as a matter of intent. In particular, marshaling is about getting parameters from here to there, while serialization is about copying structured data to or from a primitive form such as a byte stream.


To add to the other answers, by implementating java.io.Serializable, you get "automatic" serialization capability for objects of your class. No need to implement any other logic, it'll just work. The Java runtime will use reflection to figure out how to marshal and unmarshal your objects.

In earlier version of Java, reflection was very slow, and so serializaing large object graphs (e.g. in client-server RMI applications) was a bit of a performance problem. To handle this situation, the java.io.Externalizable interface was provided, which is like java.io.Serializable but with custom-written mechanisms to perform the marshalling and unmarshalling functions (you need to implement readExternal and writeExternal methods on your class). This gives you the means to get around the reflection performance bottleneck.

In recent versions of Java (1.3 onwards, certainly) the performance of reflection is vastly better than it used to be, and so this is much less of a problem. I suspect you'd be hard-pressed to get a meaningful benefit from Externalizable with a modern JVM.

Also, the built-in Java serialization mechanism isn't the only one, you can get third-party replacements, such as JBoss Serialization, which is considerably quicker, and is a drop-in replacement for the default.

A big downside of Externalizable is that you have to maintain this logic yourself - if you add, remove or change a field in your class, you have to change your writeExternal/readExternal methods to account for it.

In summary, Externalizable is a relic of the Java 1.1 days. There's really no need for it any more.


Serialization provides default functionality to store and later recreate the object. It uses verbose format to define the whole graph of objects to be stored e.g. suppose you have a linkedList and you code like below, then the default serialization will discover all the objects which are linked and will serialize. In default serialization the object is constructed entirely from its stored bits, with no constructor calls.

  ObjectOutputStream oos = new ObjectOutputStream(
      new FileOutputStream("/Users/Desktop/files/temp.txt"));
  oos.writeObject(linkedListHead); //writing head of linked list
  oos.close();

But if you want restricted serialization or don't want some portion of your object to be serialized then use Externalizable. The Externalizable interface extends the Serializable interface and adds two methods, writeExternal() and readExternal(). These are automatically called while serialization or deserialization. While working with Externalizable we should remember that the default constructer should be public else the code will throw exception. Please follow the below code:

public class MyExternalizable implements Externalizable
{

private String userName;
private String passWord;
private Integer roll;

public MyExternalizable()
{
}

public MyExternalizable(String userName, String passWord, Integer roll)
{
    this.userName = userName;
    this.passWord = passWord;
    this.roll = roll;
}

@Override
public void writeExternal(ObjectOutput oo) throws IOException 
{
    oo.writeObject(userName);
    oo.writeObject(roll);
}

@Override
public void readExternal(ObjectInput oi) throws IOException, ClassNotFoundException 
{
    userName = (String)oi.readObject();
    roll = (Integer)oi.readObject();
}

public String toString()
{
    StringBuilder b = new StringBuilder();
    b.append("userName: ");
    b.append(userName);
    b.append("  passWord: ");
    b.append(passWord);
    b.append("  roll: ");
    b.append(roll);
   
    return b.toString();
}
public static void main(String[] args)
{
    try
    {
        MyExternalizable m  = new MyExternalizable("nikki", "student001", 20);
        System.out.println(m.toString());
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("/Users/Desktop/files/temp1.txt"));
        oos.writeObject(m);
        oos.close();
        
        System.out.println("***********************************************************************");
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("/Users/Desktop/files/temp1.txt"));
        MyExternalizable mm = (MyExternalizable)ois.readObject();
        mm.toString();
        System.out.println(mm.toString());
    } 
    catch (ClassNotFoundException ex) 
    {
        Logger.getLogger(MyExternalizable.class.getName()).log(Level.SEVERE, null, ex);
    }
    catch(IOException ex)
    {
        Logger.getLogger(MyExternalizable.class.getName()).log(Level.SEVERE, null, ex);
    }
}
}

Here if you comment the default constructer then the code will throw below exception:

 java.io.InvalidClassException: javaserialization.MyExternalizable;     
 javaserialization.MyExternalizable; no valid constructor.

We can observe that as password is sensitive information, so i am not serializing it in writeExternal(ObjectOutput oo) method and not setting the value of same in readExternal(ObjectInput oi). That's the flexibility that is provided by Externalizable.

The output of the above code is as per below:

userName: nikki  passWord: student001  roll: 20
***********************************************************************
userName: nikki  passWord: null  roll: 20

We can observe as we are not setting the value of passWord so it's null.

The same can also be achieved by declaring the password field as transient.

private transient String passWord;

Hope it helps. I apologize if i made any mistakes. Thanks.


Key differences between Serializable and Externalizable

  1. Marker interface: Serializable is marker interface without any methods. Externalizable interface contains two methods: writeExternal() and readExternal().
  2. Serialization process: Default Serialization process will be kicked-in for classes implementing Serializable interface. Programmer defined Serialization process will be kicked-in for classes implementing Externalizable interface.
  3. Maintenance: Incompatible changes may break serialisation.
  4. Backward Compatibility and Control: If you have to support multiple versions, you can have full control with Externalizable interface. You can support different versions of your object. If you implement Externalizable, it's your responsibility to serialize super class
  5. public No-arg constructor: Serializable uses reflection to construct object and does not require no arg constructor. But Externalizable demands public no-arg constructor.

Refer to blog by Hitesh Garg for more details.


Serialization uses certain default behaviors to store and later recreate the object. You may specify in what order or how to handle references and complex data structures, but eventually it comes down to using the default behavior for each primitive data field.

Externalization is used in the rare cases that you really want to store and rebuild your object in a completely different way and without using the default serialization mechanisms for data fields. For example, imagine that you had your own unique encoding and compression scheme.


Object Serialization uses the Serializable and Externalizable interfaces. A Java object is only serializable. if a class or any of its superclasses implements either the java.io.Serializable interface or its subinterface, java.io.Externalizable. Most of the java class are serializable.

  • NotSerializableException: packageName.ClassName « To participate a Class Object in serialization process, The class must implement either Serializable or Externalizable interface.

enter image description here


Serializable Interface

Object Serialization produces a stream with information about the Java classes for the objects which are being saved. For serializable objects, sufficient information is kept to restore those objects even if a different (but compatible) version of the implementation of the class is present. The Serializable interface is defined to identify classes which implement the serializable protocol:

package java.io;

public interface Serializable {};
  • The serialization interface has no methods or fields and serves only to identify the semantics of being serializable. For serializing/deserializing a class, either we can use default writeObject and readObject methods (or) we can overriding writeObject and readObject methods from a class.
  • JVM will have complete control in serializing the object. use transient keyword to prevent the data member from being serialized.
  • Here serializable objects is reconstructed directly from the stream without executing
  • InvalidClassException « In deserialization process, if local class serialVersionUID value is different from the corresponding sender's class. then result's in conflict as java.io.InvalidClassException: com.github.objects.User; local class incompatible: stream classdesc serialVersionUID = 5081877, local class serialVersionUID = 50818771
  • The values of the non-transient and non-static fields of the class get serialized.

Externalizable Interface

For Externalizable objects, only the identity of the class of the object is saved by the container; the class must save and restore the contents. The Externalizable interface is defined as follows:

package java.io;

public interface Externalizable extends Serializable
{
    public void writeExternal(ObjectOutput out)
        throws IOException;

    public void readExternal(ObjectInput in)
        throws IOException, java.lang.ClassNotFoundException;
}
  • The Externalizable interface has two methods, an externalizable object must implement a writeExternal and readExternal methods to save/restore the state of an object.
  • Programmer has to take care of which objects to be serialized. As a programmer take care of Serialization So, here transient keyword will not restrict any object in Serialization process.
  • When an Externalizable object is reconstructed, an instance is created using the public no-arg constructor, then the readExternal method called. Serializable objects are restored by reading them from an ObjectInputStream.
  • OptionalDataException « The fields MUST BE IN THE SAME ORDER AND TYPE as we wrote them out. If there is any mismatch of type from the stream it throws OptionalDataException.

    @Override public void writeExternal(ObjectOutput out) throws IOException {
        out.writeInt( id );
        out.writeUTF( role );
        out.writeObject(address);
    }
    @Override public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
        this.id = in.readInt();
        this.address = (Address) in.readObject();
        this.role = in.readUTF();
    }
    
  • The instance fields of the class which written (exposed) to ObjectOutput get serialized.


Example « implements Serializable

class Role {
    String role;
}
class User extends Role implements Serializable {

    private static final long serialVersionUID = 5081877L;
    Integer id;
    Address address;

    public User() {
        System.out.println("Default Constructor get executed.");
    }
    public User( String role ) {
        this.role = role;
        System.out.println("Parametarised Constructor.");
    }
}

class Address implements Serializable {

    private static final long serialVersionUID = 5081877L;
    String country;
}

Example « implements Externalizable

class User extends Role implements Externalizable {

    Integer id;
    Address address;
    // mandatory public no-arg constructor
    public User() {
        System.out.println("Default Constructor get executed.");
    }
    public User( String role ) {
        this.role = role;
        System.out.println("Parametarised Constructor.");
    }

    @Override
    public void writeExternal(ObjectOutput out) throws IOException {
        out.writeInt( id );
        out.writeUTF( role );
        out.writeObject(address);
    }
    @Override
    public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
        this.id = in.readInt();
        this.address = (Address) in.readObject();
        this.role = in.readUTF();
    }
}

Example

public class CustomClass_Serialization {
    static String serFilename = "D:/serializable_CustomClass.ser";

    public static void main(String[] args) throws IOException {
        Address add = new Address();
        add.country = "IND";

        User obj = new User("SE");
        obj.id = 7;
        obj.address = add;

        // Serialization
        objects_serialize(obj, serFilename);
        objects_deserialize(obj, serFilename);

        // Externalization
        objects_WriteRead_External(obj, serFilename);
    }

    public static void objects_serialize( User obj, String serFilename ) throws IOException{
        FileOutputStream fos = new FileOutputStream( new File( serFilename ) );
        ObjectOutputStream objectOut = new ObjectOutputStream( fos );

        // java.io.NotSerializableException: com.github.objects.Address
        objectOut.writeObject( obj );
        objectOut.flush();
        objectOut.close();
        fos.close();

        System.out.println("Data Stored in to a file");
    }
    public static void objects_deserialize( User obj, String serFilename ) throws IOException{
        try {
            FileInputStream fis = new FileInputStream( new File( serFilename ) );
            ObjectInputStream ois = new ObjectInputStream( fis );
            Object readObject;
            readObject = ois.readObject();
            String calssName = readObject.getClass().getName();
            System.out.println("Restoring Class Name : "+ calssName); // InvalidClassException

            User user = (User) readObject;
            System.out.format("Obj[Id:%d, Role:%s] \n", user.id, user.role);

            Address add = (Address) user.address;
            System.out.println("Inner Obj : "+ add.country );
            ois.close();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }
    }

    public static void objects_WriteRead_External( User obj, String serFilename ) throws IOException {
        FileOutputStream fos = new FileOutputStream(new File( serFilename ));
        ObjectOutputStream objectOut = new ObjectOutputStream( fos );

        obj.writeExternal( objectOut );
        objectOut.flush();

        fos.close();

        System.out.println("Data Stored in to a file");

        try {
            // create a new instance and read the assign the contents from stream.
            User user = new User();

            FileInputStream fis = new FileInputStream(new File( serFilename ));
            ObjectInputStream ois = new ObjectInputStream( fis );

            user.readExternal(ois);

            System.out.format("Obj[Id:%d, Role:%s] \n", user.id, user.role);

            Address add = (Address) user.address;
            System.out.println("Inner Obj : "+ add.country );
            ois.close();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }
    }
}

@see

  • What is Object Serialization
  • Object Serialization: Frequently Asked Questions

The Externalizable interface was not actually provided to optimize the serialization process performance! but to provide means of implementing your own custom processing and offer complete control over the format and contents of the stream for an object and its super types!

Examples of this is the implementation of AMF (ActionScript Message Format) remoting to transfer native action script objects over the network.


https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html

Default serialization is somewhat verbose, and assumes the widest possible usage scenario of the serialized object, and accordingly the default format (Serializable) annotates the resultant stream with information about the class of the serialized object.

Externalization give the producer of the object stream complete control over the precise class meta-data (if any) beyond the minimal required identification of the class (e.g. its name). This is clearly desirable in certain situations, such as closed environments, where producer of the object stream and its consumer (which reifies the object from the stream) are matched, and additional metadata about the class serves no purpose and degrades performance.

Additionally (as Uri point out) externalization also provides for complete control over the encoding of the data in the stream corresponding to Java types. For (a contrived) example, you may wish to record boolean true as 'Y' and false as 'N'. Externalization allows you to do that.