Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

What is the difference between pyenv, virtualenv, anaconda?

People also ask

Is Pyenv the same as virtualenv?

pyenv is a Python version management. It installs/uninstalls different Python versions, sets global and local(directory) Python version. pyenv-virtualenv is a pyenv plugin that manages Python virtual environments on UNIX-like systems.

Should I use Anaconda or virtualenv?

As you see, if we are integrating both the frontend and machine learning setup, we need to use the python virtualenv. If we are going to use only the data science or machine learning setup, it's good to use the anaconda itself.

What is the difference between conda ENV and virtualenv?

venv is an environment manager for Python . conda is both a package and environment manager and is language agnostic . Whereas venv creates isolated environments for Python development only, conda can create isolated environments for any language (in theory).

What is the difference between VENV and virtualenv?

Then use virtualenv or venv. These are almost completely interchangeable, the difference being that virtualenv supports older python versions and has a few more minor unique features, while venv is in the standard library.


Edit: It's worth mentioning pip here as well, as conda and pip have similarities and differences that are relevant to this topic.

pip: the Python Package Manager.

  • You might think of pip as the python equivalent of the ruby gem command
  • pip is not included with python by default.
  • You may install Python using homebrew, which will install pip automatically: brew install python
  • The final version of OSX did not include pip by default. To add pip to your mac system's version of python, you can sudo easy_install pip
  • You can find and publish python packages using PyPI: The Python Package Index
  • The requirements.txt file is comparable to the ruby gemfile
  • To create a requirements text file, pip freeze > requirements.txt
  • Note, at this point, we have python installed on our system, and we have created a requirements.txt file that outlines all of the python packages that have been installed on your system.

pyenv: Python Version Manager

  • From the docs: pyenv lets you easily switch between multiple versions of Python. It's simple, unobtrusive, and follows the UNIX tradition of single-purpose tools that do one thing well. This project was forked from rbenv and ruby-build, and modified for Python.
  • Many folks hesitate to use python3.
  • If you need to use different versions of python, pyenv lets you manage this easily.

virtualenv: Python Environment Manager.

  • From the docs: The basic problem being addressed is one of dependencies and versions, and indirectly permissions. Imagine you have an application that needs version 1 of LibFoo, but another application requires version 2. How can you use both these applications? If you install everything into /usr/lib/python2.7/site-packages (or whatever your platform’s standard location is), it’s easy to end up in a situation where you unintentionally upgrade an application that shouldn’t be upgraded.
  • To create a virtualenv, simply invoke virtualenv ENV, where ENV is is a directory to place the new virtual environment.
  • To initialize the virtualenv, you need to source ENV/bin/activate. To stop using, simply call deactivate.
  • Once you activate the virtualenv, you might install all of a workspace's package requirements by running pip install -r against the project's requirements.txt file.

Anaconda: Package Manager + Environment Manager + Additional Scientific Libraries.

  • From the docs: Anaconda 4.2.0 includes an easy installation of Python (2.7.12, 3.4.5, and/or 3.5.2) and updates of over 100 pre-built and tested scientific and analytic Python packages that include NumPy, Pandas, SciPy, Matplotlib, and IPython, with over 620 more packages available via a simple conda install <packagename>
  • As a web developer, I haven't used Anaconda. It's ~3GB including all the packages.
  • There is a slimmed down miniconda version, which seems like it could be a more simple option than using pip + virtualenv, although I don't have experience using it personally.
  • While conda allows you to install packages, these packages are separate than PyPI packages, so you may still need to use pip additionally depending on the types of packages you need to install.

See also:

  • conda vs pip vs virtualenv (section in documentation from anaconda)
  • the difference between pip and conda (stackoverflow)
  • the relationship between virtualenv and pyenv (stackoverflow)

Simple analogy:

  • pyenv ~ rbenv
  • pip ~ bundler
  • virtual env ~ gemset in rvm. This can be managed by bundler directly without gemset.

Since I use python3 I prefer the python3 built-in virtual environment named venv. venv is simple and easy to use. I would recommend you to read its official docs. The doc is short and concise.

In ruby, we don't really need a virtual environment because the bundler takes care of it. Both virtual env and bundler are great, however, they have different solutions to solve the same problem.