Sharding is a method for distributing a single dataset across multiple databases, which can then be stored on multiple machines. This allows for larger datasets to be split into smaller chunks and stored in multiple data nodes, increasing the total storage capacity of the system.
Sharding involves splitting and distributing one logical data set across multiple databases that share nothing and can be deployed across multiple servers. To achieve sharding, the rows or columns of a larger database table are split into multiple smaller tables.
A well-designed shard database architecture allows the data and the workload to be evenly distributed across all database shards. Queries that land on different shards are able to reach an expected level of performance consistently.
Sharding is a great solution when the single database of your application is not capable to handle/store a huge amount of growing data. Sharding helps to scale the database and improve the performance of the application.
Sharding is just another name for "horizontal partitioning" of a database. You might want to search for that term to get it clearer.
From Wikipedia:
Horizontal partitioning is a design principle whereby rows of a database table are held separately, rather than splitting by columns (as for normalization). Each partition forms part of a shard, which may in turn be located on a separate database server or physical location. The advantage is the number of rows in each table is reduced (this reduces index size, thus improves search performance). If the sharding is based on some real-world aspect of the data (e.g. European customers vs. American customers) then it may be possible to infer the appropriate shard membership easily and automatically, and query only the relevant shard.
Some more information about sharding:
Firstly, each database server is identical, having the same table structure. Secondly, the data records are logically split up in a sharded database. Unlike the partitioned database, each complete data record exists in only one shard (unless there's mirroring for backup/redundancy) with all CRUD operations performed just in that database. You may not like the terminology used, but this does represent a different way of organizing a logical database into smaller parts.
Update: You wont break MVC. The work of determining the correct shard where to store the data would be transparently done by your data access layer. There you would have to determine the correct shard based on the criteria which you used to shard your database. (As you have to manually shard the database into some different shards based on some concrete aspects of your application.) Then you have to take care when loading and storing the data from/into the database to use the correct shard.
Maybe this example with Java code makes it somewhat clearer (it's about the Hibernate Shards project), how this would work in a real world scenario.
To address the "why sharding
": It's mainly only for very large scale applications, with lots of data. First, it helps minimizing response times for database queries. Second, you can use more cheaper, "lower-end" machines to host your data on, instead of one big server, which might not suffice anymore.
If you have queries to a DBMS for which the locality is quite restricted (say, a user only fires selects with a 'where username = $my_username') it makes sense to put all the usernames starting with A-M on one server and all from N-Z on the other. By this you get near linear scaling for some queries.
Long story short: Sharding is basically the process of distributing tables onto different servers in order to balance the load onto both equally.
Of course, it's so much more complicated in reality. :)
Sharding is horizontal(row wise) database partitioning as opposed to vertical(column wise) partitioning which is Normalization. It separates very large databases into smaller, faster and more easily managed parts called data shards. It is a mechanism to achieve distributed systems.
Why do we need distributed systems?
You can read more here: Advantages of Distributed database
How sharding help achieve distributed system?
You can partition a search index into N partitions and load each index on a separate server. If you query one server, you will get 1/Nth of the results. So to get complete result set, a typical distributed search system use an aggregator that will accumulate results from each server and combine them. An aggregator also distribute query onto each server. This aggregator program is called MapReduce in big data terminology. In other words, Distributed Systems = Sharding + MapReduce (Although there are other things too).
A visual representation below.
Is sharding mostly important in very large scale applications or does it apply to smaller scale ones?
Sharding is a concern if and only if your needs scale past what can be served by a single database server. It's a swell tool if you have shardable data and you have incredibly high scalability and performance requirements. I would guess that in my entire 12 years I've been a software professional, I've encountered one situation that could have benefited from sharding. It's an advanced technique with very limited applicability.
Besides, the future is probably going to be something fun and exciting like a massive object "cloud" that erases all potential performance limitations, right? :)
Sharding was originally coined by google engineers and you can see it used pretty heavily when writing applications on Google App Engine. Since there are hard limitations on the amount of resource your queries can use and because queries themselves have strict limitations, sharding is not only encouraged but almost enforced by the architecture.
Another place sharding can be used is to reduce contention on data entities. It is especially important when building scalable systems to watch out for those piece of data that are written often because they are always the bottleneck. A good solution is to shard off that specific entity and write to multile copies, then read the total. An example of this "sharded counter wrt GAE: http://code.google.com/appengine/articles/sharding_counters.html
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With