I found this interesting line in: a book http://www.acceleratedcpp.com/ - sources - chapter 11 - Vec.h (I is a std::vector remake)
And I don't really understand what is this version of operator good for. Why should there be two versions (const and a non-const) of this operator defined?
I even tried it out and it seems to me, that the non-const version is called all the time... Can you please explain?
#include <iostream>
#include <algorithm>
#include <cstddef>
#include <memory>
using namespace std;
template <class T> class Vec {
public:
typedef T* iterator;
typedef const T* const_iterator;
typedef size_t size_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
Vec() { create(); }
explicit Vec(size_type n, const T& t = T()) { create(n, t); }
Vec(const Vec& v) { create(v.begin(), v.end()); }
Vec& operator=(const Vec&); // as defined in 11.3.2/196
~Vec() { uncreate(); }
T& operator[](size_type i) { cout << "T&";return data[i]; }
const T& operator[](size_type i) const { cout << "const T&!";return data[i]; }
void push_back(const T& t) {
if (avail == limit)
grow();
unchecked_append(t);
}
size_type size() const { return avail - data; } // changed
iterator begin() { return data; }
const_iterator begin() const { return data; }
iterator end() { return avail; } // changed
const_iterator end() const { return avail; } // changed
void clear() { uncreate(); }
bool empty() const { return data == avail; }
private:
iterator data; // first element in the `Vec'
iterator avail; // (one past) the last element in the `Vec'
iterator limit; // (one past) the allocated memory
// facilities for memory allocation
std::allocator<T> alloc; // object to handle memory allocation
// allocate and initialize the underlying array
void create();
void create(size_type, const T&);
void create(const_iterator, const_iterator);
// destroy the elements in the array and free the memory
void uncreate();
// support functions for `push_back'
void grow();
void unchecked_append(const T&);
};
template <class T> void Vec<T>::create()
{
data = avail = limit = 0;
}
template <class T> void Vec<T>::create(size_type n, const T& val)
{
#ifdef _MSC_VER
data = alloc.allocate(n, 0);
#else
data = alloc.allocate(n);
#endif
limit = avail = data + n;
std::uninitialized_fill(data, limit, val);
}
template <class T>
void Vec<T>::create(const_iterator i, const_iterator j)
{
#ifdef _MSC_VER
data = alloc.allocate(j - i, 0);
#else
data = alloc.allocate(j - i);
#endif
limit = avail = std::uninitialized_copy(i, j, data);
}
template <class T> void Vec<T>::uncreate()
{
if (data) {
// destroy (in reverse order) the elements that were constructed
iterator it = avail;
while (it != data)
alloc.destroy(--it);
// return all the space that was allocated
alloc.deallocate(data, limit - data);
}
// reset pointers to indicate that the `Vec' is empty again
data = limit = avail = 0;
}
template <class T> void Vec<T>::grow()
{
// when growing, allocate twice as much space as currently in use
size_type new_size = max(2 * (limit - data), ptrdiff_t(1));
// allocate new space and copy existing elements to the new space
#ifdef _MSC_VER
iterator new_data = alloc.allocate(new_size, 0);
#else
iterator new_data = alloc.allocate(new_size);
#endif
iterator new_avail = std::uninitialized_copy(data, avail, new_data);
// return the old space
uncreate();
// reset pointers to point to the newly allocated space
data = new_data;
avail = new_avail;
limit = data + new_size;
}
// assumes `avail' points at allocated, but uninitialized space
template <class T> void Vec<T>::unchecked_append(const T& val)
{
alloc.construct(avail++, val);
}
template <class T>
Vec<T>& Vec<T>::operator=(const Vec& rhs)
{
// check for self-assignment
if (&rhs != this) {
// free the array in the left-hand side
uncreate();
// copy elements from the right-hand to the left-hand side
create(rhs.begin(), rhs.end());
}
return *this;
}
int main() {
Vec<int> v;
v.push_back(5);
cout << v[0] << endl; // even now the non-const version is called!
system("pause");
}
Thanks!
Quite surely that was
const T& operator[](size_type i) const // <-- note the extra const
Const signals the compiler that the return value may not be modified by the calling code.
This has to do with:
Rationale: if the declaring object itself is
const
there would be no way for the method to return a reference to a (part of) a membernon-const
; Const-ness cascades if you will: this is known as const-correctness.
In practice you will often see const/non-const overloads like so:
class Container
{
private:
int data[10];
public:
int & operator[](int i) { return data[i]; }
int const & operator[](int i) const { return data[i]; }
};
//
Container x;
Container& r = x;
const Container& cr = x;
x [3] += 1;
r [3] += 1; // just fine, non-const overload selected
cr[3] += 1; // compile error, return value `const &`
volatile
modifierconst
is mutable
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With