I am currently trying to implement basic matrix vector multiplication in Cython (as part of a much larger project to reduce computation) and finding that my code is about 2x slower than Numpy.dot
.
I am wondering if there is something that I am missing that is resulting in the slowdown. I am writing optimized Cython code, declaring variable types, requiring contiguous arrays, and avoiding cache misses. I even tried having Cython as a wrapper and calling native C code (see below).
I'm wondering: what else could I do to speed up my implementation so runs as quickly as NumPy for this basic operation?
The Cython code that I'm using is beow:
import numpy as np
cimport numpy as np
cimport cython
DTYPE = np.float64;
ctypedef np.float64_t DTYPE_T
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def matrix_vector_multiplication(np.ndarray[DTYPE_T, ndim=2] A, np.ndarray[DTYPE_T, ndim=1] x):
cdef Py_ssize_t i, j
cdef Py_ssize_t N = A.shape[0]
cdef Py_ssize_t D = A.shape[1]
cdef np.ndarray[DTYPE_T, ndim=1] y = np.empty(N, dtype = DTYPE)
cdef DTYPE_T val
for i in range(N):
val = 0.0
for j in range(D):
val += A[i,j] * x[j]
y[i] = val
return y
I am compiling this file (seMatrixVectorExample.pyx
) using the following script:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy as np
ext_modules=[ Extension("seMatrixVectorExample",
["seMatrixVectorExample.pyx"],
libraries=["m"],
extra_compile_args = ["-ffast-math"])]
setup(
name = "seMatrixVectorExample",
cmdclass = {"build_ext": build_ext},
include_dirs = [np.get_include()],
ext_modules = ext_modules
)
and using the following test script to assess performance:
import numpy as np
from seMatrixVectorExample import matrix_vector_multiplication
import time
n_rows, n_cols = 1e6, 100
np.random.seed(seed = 0)
#initialize data matrix X and label vector Y
A = np.random.random(size=(n_rows, n_cols))
np.require(A, requirements = ['C'])
x = np.random.random(size=n_cols)
x = np.require(x, requirements = ['C'])
start_time = time.time()
scores = matrix_vector_multiplication(A, x)
print "cython runtime = %1.5f seconds" % (time.time() - start_time)
start_time = time.time()
py_scores = np.exp(A.dot(x))
print "numpy runtime = %1.5f seconds" % (time.time() - start_time)
For a test matrix with n_rows = 10e6
and n_cols = 100
I get:
cython runtime = 0.08852 seconds
numpy runtime = 0.04372 seconds
Edit: It's worth mentioning that the slowdown persists even when I implement the matrix multiplication in native C code, and only use Cython as a wrapper.
void c_matrix_vector_multiplication(double* y, double* A, double* x, int N, int D) {
int i, j;
int index = 0;
double val;
for (i = 0; i < N; i++) {
val = 0.0;
for (j = 0; j < D; j++) {
val = val + A[index] * x[j];
index++;
}
y[i] = val;
}
return;
}
and here is the Cython wrapper, which just sends the pointer to the first element of y
, A
and x
. :
import cython
import numpy as np
cimport numpy as np
DTYPE = np.float64;
ctypedef np.float64_t DTYPE_T
# declare the interface to the C code
cdef extern void c_multiply (double* y, double* A, double* x, int N, int D)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def multiply(np.ndarray[DTYPE_T, ndim=2, mode="c"] A, np.ndarray[DTYPE_T, ndim=1, mode="c"] x):
cdef int N = A.shape[0]
cdef int D = A.shape[1]
cdef np.ndarray[DTYPE_T, ndim=1, mode = "c"] y = np.empty(N, dtype = DTYPE)
c_multiply (&y[0], &A[0,0], &x[0], N, D)
return y
OK finally managed to get runtimes that are better than NumPy!
Here is what (I think) caused the difference: NumPy is calling BLAS functions, which are coded in Fortran instead of C, resulting in the speed difference.
I think that this is important to note, since I was previously under the impression that the BLAS functions were coded in C and could not see why they would run noticeably faster than the second native C implementation that I posted in the question.
In either case, I can now replicate performance by using Cython + the SciPy Cython BLAS function pointers from scipy.linalg.cython_blas.
For completeness, here is the new Cython code blas_multiply.pyx
:
import cython
import numpy as np
cimport numpy as np
cimport scipy.linalg.cython_blas as blas
DTYPE = np.float64
ctypedef np.float64_t DTYPE_T
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def blas_multiply(np.ndarray[DTYPE_T, ndim=2, mode="fortran"] A, np.ndarray[DTYPE_T, ndim=1, mode="fortran"] x):
#calls dgemv from BLAS which computes y = alpha * trans(A) + beta * y
#see: http://www.nag.com/numeric/fl/nagdoc_fl22/xhtml/F06/f06paf.xml
cdef int N = A.shape[0]
cdef int D = A.shape[1]
cdef int lda = N
cdef int incx = 1 #increments of x
cdef int incy = 1 #increments of y
cdef double alpha = 1.0
cdef double beta = 0.0
cdef np.ndarray[DTYPE_T, ndim=1, mode = "fortran"] y = np.empty(N, dtype = DTYPE)
blas.dgemv("N", &N, &D, &alpha, &A[0,0], &lda, &x[0], &incx, &beta, &y[0], &incy)
return y
Here is the code that I use to build:
!/usr/bin/env python
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy
import scipy
ext_modules=[ Extension("blas_multiply",
sources=["blas_multiply.pyx"],
include_dirs=[numpy.get_include(), scipy.get_include()],
libraries=["m"],
extra_compile_args = ["-ffast-math"])]
setup(
cmdclass = {'build_ext': build_ext},
include_dirs = [numpy.get_include(), scipy.get_include()],
ext_modules = ext_modules,
)
And here is the testing code (note that arrays passed to the BLAS function are F_CONTIGUOUS
now)
import numpy as np
from blas_multiply import blas_multiply
import time
#np.__config__.show()
n_rows, n_cols = 1e6, 100
np.random.seed(seed = 0)
#initialize data matrix X and label vector Y
X = np.random.random(size=(n_rows, n_cols))
Y = np.random.randint(low=0, high=2, size=(n_rows, 1))
Y[Y==0] = -1
Z = X*Y
Z.flags
Z = np.require(Z, requirements = ['F'])
rho_test = np.random.randint(low=-10, high=10, size= n_cols)
set_to_zero = np.random.choice(range(0, n_cols), size =(np.floor(n_cols/2), 1), replace=False)
rho_test[set_to_zero] = 0.0
rho_test = np.require(rho_test, dtype=Z.dtype, requirements = ['F'])
start_time = time.time()
scores = blas_multiply(Z, rho_test)
print "Cython runtime = %1.5f seconds" % (time.time() - start_time)
Z = np.require(Z, requirements = ['C'])
rho_test = np.require(rho_test, requirements = ['C'])
start_time = time.time()
py_scores = np.exp(Z.dot(rho_test))
print "Python runtime = %1.5f seconds" % (time.time() - start_time)
The result from this test on my machine is:
Cython runtime = 0.04556 seconds
Python runtime = 0.05110 seconds
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With