The “double tilde” (~~) operator is a double NOT Bitwise operator. Use it as a substitute for Math. floor(), since it's faster.
Another approximation symbol is the double tilde ≈, meaning "approximately equal to". The tilde is also used to indicate congruence of shapes by placing it over an = symbol, thus ≅.
The (~) tilde operator takes any number and inverts the binary digits, for example, if the number is (100111) after inversion it would be (011000).
Tilde is a R's "Primitive Function" that does not evaluate its argument, and it is normally used to create a formula object as an inner-DSL role. I hijack this functionality to make an anounymous function. Double-tilde with a two-dots symbol, .. , makes an anonymous function in which two-dots plays a placeholder.
It removes everything after the decimal point because the bitwise operators implicitly convert their operands to signed 32-bit integers. This works whether the operands are (floating-point) numbers or strings, and the result is a number.
In other words, it yields:
function(x) {
if(x < 0) return Math.ceil(x);
else return Math.floor(x);
}
only if x is between -(231) and 231 - 1. Otherwise, overflow will occur and the number will "wrap around".
This may be considered useful to convert a function's string argument to a number, but both because of the possibility of overflow and that it is incorrect for use with non-integers, I would not use it that way except for "code golf" (i.e. pointlessly trimming bytes off the source code of your program at the expense of readability and robustness). I would use +x
or Number(x)
instead.
The number -43.2, for example is:
-43.210 = 111111111111111111111111110101012
as a signed (two's complement) 32-bit binary number. (JavaScript ignores what is after the decimal point.) Inverting the bits gives:
NOT -4310 = 000000000000000000000000001010102 = 4210
Inverting again gives:
NOT 4210 = 111111111111111111111111110101012 = -4310
This differs from Math.floor(-43.2)
in that negative numbers are rounded toward zero, not away from it. (The floor function, which would equal -44, always rounds down to the next lower integer, regardless of whether the number is positive or negative.)
The first ~ operator forces the operand to an integer (possibly after coercing the value to a string or a boolean), then inverts the lowest 31 bits. Officially ECMAScript numbers are all floating-point, but some numbers are implemented as 31-bit integers in the SpiderMonkey engine.
You can use it to turn a 1-element array into an integer. Floating-points are converted according to the C rule, ie. truncation of the fractional part.
The second ~ operator then inverts the bits back, so you know that you will have an integer. This is not the same as coercing a value to boolean in a condition statement, because an empty object {} evaluates to true, whereas ~~{} evaluates to false.
js>~~"yes"
0
js>~~3
3
js>~~"yes"
0
js>~~false
0
js>~~""
0
js>~~true
1
js>~~"3"
3
js>~~{}
0
js>~~{a:2}
0
js>~~[2]
2
js>~~[2,3]
0
js>~~{toString: function() {return 4}}
4
js>~~NaN
0
js>~~[4.5]
4
js>~~5.6
5
js>~~-5.6
-5
In ECMAScript 6, the equivalent of ~~
is Math.trunc:
Returns the integral part of a number by removing any fractional digits. It does not round any numbers.
Math.trunc(13.37) // 13
Math.trunc(42.84) // 42
Math.trunc(0.123) // 0
Math.trunc(-0.123) // -0
Math.trunc("-1.123")// -1
Math.trunc(NaN) // NaN
Math.trunc("foo") // NaN
Math.trunc() // NaN
The polyfill:
function trunc(x) {
return x < 0 ? Math.ceil(x) : Math.floor(x);
}
The ~
seems to do -(N+1)
. So ~2 == -(2 + 1) == -3
If you do it again on -3 it turns it back: ~-3 == -(-3 + 1) == 2
It probably just converts a string to a number in a round-about way.
See this thread: http://www.sitepoint.com/forums/showthread.php?t=663275
Also, more detailed info is available here: http://dreaminginjavascript.wordpress.com/2008/07/04/28/
Given ~N
is -(N+1)
, ~~N
is then -(-(N+1) + 1)
. Which, evidently, leads to a neat trick.
Just a bit of a warning. The other answers here got me into some trouble.
The intent is to remove anything after the decimal point of a floating point number, but it has some corner cases that make it a bug hazard. I'd recommend avoiding ~~.
First, ~~ doesn't work on very large numbers.
~~1000000000000 == -727279968
As an alternative, use Math.trunc()
(as Gajus mentioned, Math.trunc()
returns the integer part of a floating point number but is only available in ECMAScript 6 compliant JavaScript). You can always make your own Math.trunc()
for non-ECMAScript-6 environments by doing this:
if(!Math.trunc){
Math.trunc = function(value){
return Math.sign(value) * Math.floor(Math.abs(value));
}
}
I wrote a blog post on this for reference: http://bitlords.blogspot.com/2016/08/the-double-tilde-x-technique-in.html
Here is an example of how this operator can be used efficiently, where it makes sense to use it:
leftOffset = -(~~$('html').css('padding-left').replace('px', '') + ~~$('body').css('margin-left').replace('px', '')),
Source:
See section Interacting with points
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With