I found it difficult to argue with anything in this critique of ASP.net MVC's framework for page composition.
http://www.matlus.com/problems-with-asp-net-mvc-framework-design/
Particularly these points:
For small applications, I don't think that a lot of these prove to be much of a problem, but in large applications where you want to reuse a lot of shared components, or even if you just have a large application that depends on multiple backend sources of information to obtain all of the information necessary to render a view, it starts to break down.
Various half-solutions to these problems have been proposed but they do not appear to scale well or have undesirable design constraints.
Here is an example application scenario:
Okay, so in asp.net mvc3, let's say that you decide that you want to share a common Razor layout that contains the 50% common UI markup. This assists with Separation of Concerns in that application developers don't need to be concerned about common ui and can focus on the logic and views specific to their domain of expertise.
However, this completely breaks down in the case that this shared layout needs data (some semblance of one or more model types) to render itself completely. You may have independent elements on the page that each need a particular data model, such as: * primary menu model * secondary menu model * footer links model * authorization model * footer disclaimers model
And each of these models may have separate sources. So although you can share the template, there is not an easy way to share the logic to build each of these models -- and there is definitely not one that is generic, extensible, and performant that I have seen.
Some approaches to this problem that I have seen are:
There are additional cases (some seen on stackoverflow as well) where there are other problems with RenderAction() as a solution. e.g. the fact that issuing multiple RenderAction() calls in a loop results in serial execution of all of those controller methods. There is no opportunity for parallelism with RenderAction(). I/O bound service calls in each child controller action cause the whole rendering process to wait on I/O. A controller only has knowledge of its immediate view and model and nothing has a complete picture of what is going to be inside the view in order to parallelize some operations.
The author of the above critique developed a different UI model on top of ASP.Net mvc called Quartz that allows a God Controller to have intimate knowledge of the views and can hand each of them a view model so has the opportunity to parallelize service calls in a central place to build those view models. I don't know if this is the best design to provide hooks for overcoming the problems but looks promising.
My question is, what is the best practice for building a complex application on top of ASP.Net MVC that cleanly solves these problems? I have thought of a couple possibilities (although none may be practical within ASP.Net MVC--that is TBD) but someone else must have ran into this already. What are the design patterns within ASP.Net MVC or what is coming down the pike that could make this a tractable problem?
The Model-View-Controller (MVC) architectural pattern separates an application into three main components: the model, the view, and the controller. The ASP.NET MVC framework provides an alternative to the ASP.NET Web Forms pattern for creating MVC-based Web applications.
You can create an external trigger that calls into your MVC action method every 24 hours. So you are executing your code every 24 hours. There are multiple ways and services to do that, i have used different services. Or you can create your own if you do not want to use third party.
Personally, I think that the advantages of using Child Actions via RenderAction outweigh the disadvantages.
You can create 'widget' sort of elements, and wrap up their logic in a controller action - this way the view calling the widget can remain quite ignorant of what the Child Action is doing and how it is doing it - leading to a nice separation of concerns.
You have detailed the disadvantages of this approach, however I think that the negative impact can be minimised with a reasonable caching strategy.
I'm not sure there's really much more I can contribute to this "question". I think you have a good understanding of the problems and solutions, advantages and disadvantages.
In the app I'm currently working on, we utilize a couple of these approaches by having both a base model object as well as a base controller. In order to minimize roundtrips, we store some data in session and re-populate in the model by overriding the OnActionExecuted in the base controller and grab the model out of the context and set properties out of session.
I'd certainly like to hear any wonderful solutions as well, but I think these are just the tradeoffs to deal with.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With