Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

ValueError: Unknown loss function:focal_loss_fixed when loading model with my custom loss function

I designed my own loss function. However when trying to revert to the best model encountered during training with

model = load_model("lc_model.h5")

I got the following error:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-105-9d09ef163b0a> in <module>
     23 
     24 # revert to the best model encountered during training
---> 25 model = load_model("lc_model.h5")

C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\saving.py in load_model(filepath, custom_objects, compile)
    417     f = h5dict(filepath, 'r')
    418     try:
--> 419         model = _deserialize_model(f, custom_objects, compile)
    420     finally:
    421         if opened_new_file:

C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\saving.py in _deserialize_model(f, custom_objects, compile)
    310                       metrics=metrics,
    311                       loss_weights=loss_weights,
--> 312                       sample_weight_mode=sample_weight_mode)
    313 
    314         # Set optimizer weights.

C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, **kwargs)
    137             loss_functions = [losses.get(l) for l in loss]
    138         else:
--> 139             loss_function = losses.get(loss)
    140             loss_functions = [loss_function for _ in range(len(self.outputs))]
    141         self.loss_functions = loss_functions

C:\ProgramData\Anaconda3\lib\site-packages\keras\losses.py in get(identifier)
    131     if isinstance(identifier, six.string_types):
    132         identifier = str(identifier)
--> 133         return deserialize(identifier)
    134     if isinstance(identifier, dict):
    135         return deserialize(identifier)

C:\ProgramData\Anaconda3\lib\site-packages\keras\losses.py in deserialize(name, custom_objects)
    112                                     module_objects=globals(),
    113                                     custom_objects=custom_objects,
--> 114                                     printable_module_name='loss function')
    115 
    116 

C:\ProgramData\Anaconda3\lib\site-packages\keras\utils\generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
    163             if fn is None:
    164                 raise ValueError('Unknown ' + printable_module_name +
--> 165                                  ':' + function_name)
    166         return fn
    167     else:

ValueError: Unknown loss function:focal_loss_fixed

Here is the neural network :

from keras.callbacks import ModelCheckpoint
from keras.models import load_model

model = create_model(x_train.shape[1], y_train.shape[1])

epochs =  35
batch_sz = 64

print("Beginning model training with batch size {} and {} epochs".format(batch_sz, epochs))

checkpoint = ModelCheckpoint("lc_model.h5", monitor='val_acc', verbose=0, save_best_only=True, mode='auto', period=1)

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.constraints import maxnorm

def create_model(input_dim, output_dim):
    print(output_dim)
    # create model
    model = Sequential()
    # input layer
    model.add(Dense(100, input_dim=input_dim, activation='relu', kernel_constraint=maxnorm(3)))
    model.add(Dropout(0.2))

    # hidden layer
    model.add(Dense(60, activation='relu', kernel_constraint=maxnorm(3)))
    model.add(Dropout(0.2))

    # output layer
    model.add(Dense(output_dim, activation='softmax'))

    # Compile model
    # model.compile(loss='categorical_crossentropy', loss_weights=None, optimizer='adam', metrics=['accuracy'])
    model.compile(loss=focal_loss(alpha=1), loss_weights=None, optimizer='adam', metrics=['accuracy'])

    return model

# train the model
history = model.fit(x_train.as_matrix(),
                y_train.as_matrix(),
                validation_split=0.2,
                epochs=epochs,  
                batch_size=batch_sz, # Can I tweak the batch here to get evenly distributed data ?
                verbose=2,
                class_weight = weights, # class_weight tells the model to "pay more attention" to samples from an under-represented fraud class.
                callbacks=[checkpoint])

# revert to the best model encountered during training
model = load_model("lc_model.h5")

And here is my loss function:

import tensorflow as tf

def focal_loss(gamma=2., alpha=4.):

    gamma = float(gamma)
    alpha = float(alpha)

    def focal_loss_fixed(y_true, y_pred):
        """Focal loss for multi-classification
        FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)
        Notice: y_pred is probability after softmax
        gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper
        d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)
        Focal Loss for Dense Object Detection
        https://arxiv.org/abs/1708.02002

        Arguments:
            y_true {tensor} -- ground truth labels, shape of [batch_size, num_cls]
            y_pred {tensor} -- model's output, shape of [batch_size, num_cls]

        Keyword Arguments:
            gamma {float} -- (default: {2.0})
            alpha {float} -- (default: {4.0})

        Returns:
            [tensor] -- loss.
        """
        epsilon = 1.e-9
        y_true = tf.convert_to_tensor(y_true, tf.float32)
        y_pred = tf.convert_to_tensor(y_pred, tf.float32)

        model_out = tf.add(y_pred, epsilon)
        ce = tf.multiply(y_true, -tf.log(model_out))
        weight = tf.multiply(y_true, tf.pow(tf.subtract(1., model_out), gamma))
        fl = tf.multiply(alpha, tf.multiply(weight, ce))
        reduced_fl = tf.reduce_max(fl, axis=1)
        return tf.reduce_mean(reduced_fl)
    return focal_loss_fixed

# model.compile(loss=focal_loss(alpha=1), optimizer='nadam', metrics=['accuracy'])
# model.fit(X_train, y_train, epochs=3, batch_size=1000)
like image 765
Revolucion for Monica Avatar asked Sep 17 '19 21:09

Revolucion for Monica


1 Answers

You have to load the custom_objects of focal_loss_fixed as shown below:

model = load_model("lc_model.h5", custom_objects={'focal_loss_fixed': focal_loss()})

However, if you wish to just perform inference with your model and not further optimization or training your model, you can simply wish to ignore the loss function like this:

model = load_model("lc_model.h5", compile=False)
like image 60
Prasad Avatar answered Oct 20 '22 00:10

Prasad