Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Using scipy.stats.gaussian_kde with 2 dimensional data

I'm trying to use the scipy.stats.gaussian_kde class to smooth out some discrete data collected with latitude and longitude information, so it shows up as somewhat similar to a contour map in the end, where the high densities are the peak and low densities are the valley.

I'm having a hard time putting a two-dimensional dataset into the gaussian_kde class. I've played around to figure out how it works with 1 dimensional data, so I thought 2 dimensional would be something along the lines of:

from scipy import stats
from numpy import array
data = array([[1.1, 1.1],
              [1.2, 1.2],
              [1.3, 1.3]])
kde = stats.gaussian_kde(data)
kde.evaluate([1,2,3],[1,2,3])

which is saying that I have 3 points at [1.1, 1.1], [1.2, 1.2], [1.3, 1.3]. and I want to have the kernel density estimation using from 1 to 3 using width of 1 on x and y axis.

When creating the gaussian_kde, it keeps giving me this error:

raise LinAlgError("singular matrix")
numpy.linalg.linalg.LinAlgError: singular matrix

Looking into the source code of gaussian_kde, I realize that the way I'm thinking about what dataset means is completely different from how the dimensionality is calculate, but I could not find any sample code showing how multi-dimension data works with the module. Could someone help me with some sample ways to use gaussian_kde with multi-dimensional data?

like image 589
jet Avatar asked Nov 08 '10 22:11

jet


People also ask

What is Gaussian_kde?

gaussian_kde(dataset, bw_method=None, weights=None)[source] Representation of a kernel-density estimate using Gaussian kernels. Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way.

How do you evaluate KDE?

Kernel Density Estimation (KDE) It is estimated simply by adding the kernel values (K) from all Xj. With reference to the above table, KDE for whole data set is obtained by adding all row values. The sum is then normalized by dividing the number of data points, which is six in this example.

What is KDE factor?

In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

What is bandwidth in kernel density estimation?

Kernal Density Estimation function, and is normalized to one (and so ĝ(x) is also normalized to 1). The parameter h is called the “bandwidth”, and scales the width of the kernel. Essentially this just means placing a smooth function at the. location of each data point and then summing the result.


1 Answers

This example seems to be what you're looking for:

import numpy as np
import scipy.stats as stats
from matplotlib.pyplot import imshow

# Create some dummy data
rvs = np.append(stats.norm.rvs(loc=2,scale=1,size=(2000,1)),
                stats.norm.rvs(loc=0,scale=3,size=(2000,1)),
                axis=1)

kde = stats.kde.gaussian_kde(rvs.T)

# Regular grid to evaluate kde upon
x_flat = np.r_[rvs[:,0].min():rvs[:,0].max():128j]
y_flat = np.r_[rvs[:,1].min():rvs[:,1].max():128j]
x,y = np.meshgrid(x_flat,y_flat)
grid_coords = np.append(x.reshape(-1,1),y.reshape(-1,1),axis=1)

z = kde(grid_coords.T)
z = z.reshape(128,128)

imshow(z,aspect=x_flat.ptp()/y_flat.ptp())

enter image description here

Axes need fixing, obviously.

You can also do a scatter plot of the data with

scatter(rvs[:,0],rvs[:,1])

enter image description here

like image 160
endolith Avatar answered Nov 06 '22 08:11

endolith