I am trying to fit a cubic spline to a given set of points. My points are not ordered. I CANNOT sort or reorder the points, since I need that information.
But since the function scipy.interpolate.splrep works only on non-duplicate and monotonically increasing points I have defined a function that maps the x-coordinates to a monotonically increasing space.
My old points are:
xpoints=[4913.0, 4912.0, 4914.0, 4913.0, 4913.0, 4913.0, 4914.0, 4915.0, 4918.0, 4921.0, 4925.0, 4932.0, 4938.0, 4945.0, 4950.0, 4954.0, 4955.0, 4957.0, 4956.0, 4953.0, 4949.0, 4943.0, 4933.0, 4921.0, 4911.0, 4898.0, 4886.0, 4874.0, 4865.0, 4858.0, 4853.0, 4849.0, 4848.0, 4849.0, 4851.0, 4858.0, 4864.0, 4869.0, 4877.0, 4884.0, 4893.0, 4903.0, 4913.0, 4923.0, 4935.0, 4947.0, 4959.0, 4970.0, 4981.0, 4991.0, 5000.0, 5005.0, 5010.0, 5015.0, 5019.0, 5020.0, 5021.0, 5023.0, 5025.0, 5027.0, 5027.0, 5028.0, 5028.0, 5030.0, 5031.0, 5033.0, 5035.0, 5037.0, 5040.0, 5043.0]
ypoints=[10557.0, 10563.0, 10567.0, 10571.0, 10575.0, 10577.0, 10578.0, 10581.0, 10582.0, 10582.0, 10582.0, 10581.0, 10578.0, 10576.0, 10572.0, 10567.0, 10560.0, 10550.0, 10541.0, 10531.0, 10520.0, 10511.0, 10503.0, 10496.0, 10490.0, 10487.0, 10488.0, 10488.0, 10490.0, 10495.0, 10504.0, 10513.0, 10523.0, 10533.0, 10542.0, 10550.0, 10556.0, 10559.0, 10560.0, 10559.0, 10555.0, 10550.0, 10543.0, 10533.0, 10522.0, 10514.0, 10505.0, 10496.0, 10490.0, 10486.0, 10482.0, 10481.0, 10482.0, 10486.0, 10491.0, 10497.0, 10506.0, 10516.0, 10524.0, 10534.0, 10544.0, 10552.0, 10558.0, 10564.0, 10569.0, 10573.0, 10576.0, 10578.0, 10581.0, 10582.0]
Plots:
The code for the mapping function and interpolation is:
xnew=[]
ynew=ypoints
for c3,i in enumerate(xpoints):
if np.isfinite(np.log(i*pow(2,c3))):
xnew.append(np.log(i*pow(2,c3)))
else:
if c==0:
xnew.append(np.random.random_sample())
else:
xnew.append(xnew[c3-1]+np.random.random_sample())
xnew=np.asarray(xnew)
ynew=np.asarray(ynew)
constant1=10.0
nknots=len(xnew)/constant1
idx_knots = (np.arange(1,len(xnew)-1,(len(xnew)-2)/np.double(nknots))).astype('int')
knots = [xnew[i] for i in idx_knots]
knots = np.asarray(knots)
int_range=np.linspace(min(xnew),max(xnew),len(xnew))
tck = interpolate.splrep(xnew,ynew,k=3,task=-1,t=knots)
y1= interpolate.splev(int_range,tck,der=0)
The code is throwing an error at the function interpolate.splrep() for some set of points like the above one.
The error is: File "/home/neeraj/Desktop/koustav/res/BOS5/fit_spline3.py", line 58, in save_spline_f tck = interpolate.splrep(xnew,ynew,k=3,task=-1,t=knots) File "/usr/lib/python2.7/dist-packages/scipy/interpolate/fitpack.py", line 465, in splrep raise _iermessier(_iermess[ier][0]) ValueError: Error on input data
But for other set of points it works fine. For example for the following set of points.
xpoints=[1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1629.0, 1630.0, 1630.0, 1630.0, 1631.0, 1631.0, 1631.0, 1631.0, 1630.0, 1629.0, 1629.0, 1629.0, 1628.0, 1627.0, 1627.0, 1625.0, 1624.0, 1624.0, 1623.0, 1620.0, 1618.0, 1617.0, 1616.0, 1615.0, 1614.0, 1614.0, 1612.0, 1612.0, 1612.0, 1611.0, 1610.0, 1609.0, 1608.0, 1607.0, 1607.0, 1603.0, 1602.0, 1602.0, 1601.0, 1601.0, 1600.0, 1599.0, 1598.0]
ypoints=[10570.0, 10572.0, 10572.0, 10573.0, 10572.0, 10572.0, 10571.0, 10570.0, 10569.0, 10565.0, 10564.0, 10563.0, 10562.0, 10560.0, 10558.0, 10556.0, 10554.0, 10551.0, 10548.0, 10547.0, 10544.0, 10542.0, 10541.0, 10538.0, 10534.0, 10532.0, 10531.0, 10528.0, 10525.0, 10522.0, 10519.0, 10517.0, 10516.0, 10512.0, 10509.0, 10509.0, 10507.0, 10504.0, 10502.0, 10500.0, 10501.0, 10499.0, 10498.0, 10496.0, 10491.0, 10492.0, 10488.0, 10488.0, 10488.0, 10486.0, 10486.0, 10485.0, 10485.0, 10486.0, 10483.0, 10483.0, 10482.0, 10480.0]
Plots: Can anybody suggest what's happening ?? Thanks in advance......
The interp1d class in the scipy. interpolate is a convenient method to create a function based on fixed data points, which can be evaluated anywhere within the domain defined by the given data using linear interpolation. By using the above data, let us create a interpolate function and draw a new interpolated graph.
Interpolation is a technique of constructing data points between given data points. The scipy. interpolate is a module in Python SciPy consisting of classes, spline functions, and univariate and multivariate interpolation classes. Interpolation is done in many ways some of them are : 1-D Interpolation.
Interpolate a 1-D function. x and y are arrays of values used to approximate some function f: y = f(x). This class returns a function whose call method uses interpolation to find the value of new points.
I believe that the purpose of the function you are using, splrep(
), is to fit the y coordinate as a function of the x coordinate: y = f(x).
For splrep()
to work as expected, your function must be single-valued. That is, you must be able to draw a vertical line on the graph anywhere and have it intersect the curve exactly once.
Instead, maybe you want to fit x and y separately to a third parameter t that increases monotonically.
x = f(t)
y = g(t)
There are two easy choices for t. The first is just the index of the point (0 for the first point, 1 for the second point, etc.). The second choice is a bit harder, the accumulated straight-line distance traveled from point to point. Then you would call slrep()
separately for the x and y coordinates.
t = [0]
for i in range(1, len(x)):
t[i] = t[i-1]+np.hypot(x[i]-x[i-1], y[i]-y[i-1])
Perhaps you instead want a bezier spline?
Actually you do not have to define a new function yourself . It is like this trajectory interpolation very much :scipy: Interpolating trajectory(scipy: Interpolating trajectory )
And the answer is good for me, hope it can help you.
from scipy import interpolate as itp
mytck,myu=itp.splprep([xpoints,ypoints])
xnew,ynew= itp.splev(np.linspace(0,1,1000),mytck)
plot(xnew,ynew)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With