I'm using the Python Imaging Library for some very simple image manipulation, however I'm having trouble converting a greyscale image to a monochrome (black and white) image. If I save after changing the image to greyscale (convert('L')) then the image renders as you would expect. However, if I convert the image to a monochrome, single-band image it just gives me noise as you can see in the images below. Is there a simple way to take a colour png image to a pure black and white image using PIL / python?
from PIL import Image
import ImageEnhance
import ImageFilter
from scipy.misc import imsave
image_file = Image.open("convert_image.png") # open colour image
image_file= image_file.convert('L') # convert image to monochrome - this works
image_file= image_file.convert('1') # convert image to black and white
imsave('result_col.png', image_file)
Convert an Image to Grayscale in Python Using the Conversion Formula and the Matplotlib Library. We can also convert an image to grayscale using the standard RGB to grayscale conversion formula that is imgGray = 0.2989 * R + 0.5870 * G + 0.1140 * B .
Step 1: Import OpenCV. Step 2: Read the original image using imread(). Step 3: Convert to grayscale using cv2. cvtcolor() function.
Converting an image to black and white with OpenCV can be done with a simple binary thresholding operation. We start with a gray scale image and we define a threshold value. Then, for each pixel of the gray scale image, if its value is lesser than the threshold, then we assign to it the value 0 (black).
Approach: Read the image from the location. As a colored image has RGB layers in it and is more complex, convert it to its Grayscale form first. Set up a Threshold mark, pixels above the given mark will turn white, and below the mark will turn black.
from PIL import Image
image_file = Image.open("convert_image.png") # open colour image
image_file = image_file.convert('1') # convert image to black and white
image_file.save('result.png')
yields
A PIL only solution for creating a bi-level (black and white) image with a custom threshold:
from PIL import Image
img = Image.open('mB96s.png')
thresh = 200
fn = lambda x : 255 if x > thresh else 0
r = img.convert('L').point(fn, mode='1')
r.save('foo.png')
With just
r = img.convert('1')
r.save('foo.png')
you get a dithered image.
From left to right the input image, the black and white conversion result and the dithered result:
You can click on the images to view the unscaled versions.
Another option (which is useful e.g. for scientific purposes when you need to work with segmentation masks) is simply apply a threshold:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Binarize (make it black and white) an image with Python."""
from PIL import Image
from scipy.misc import imsave
import numpy
def binarize_image(img_path, target_path, threshold):
"""Binarize an image."""
image_file = Image.open(img_path)
image = image_file.convert('L') # convert image to monochrome
image = numpy.array(image)
image = binarize_array(image, threshold)
imsave(target_path, image)
def binarize_array(numpy_array, threshold=200):
"""Binarize a numpy array."""
for i in range(len(numpy_array)):
for j in range(len(numpy_array[0])):
if numpy_array[i][j] > threshold:
numpy_array[i][j] = 255
else:
numpy_array[i][j] = 0
return numpy_array
def get_parser():
"""Get parser object for script xy.py."""
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
parser = ArgumentParser(description=__doc__,
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("-i", "--input",
dest="input",
help="read this file",
metavar="FILE",
required=True)
parser.add_argument("-o", "--output",
dest="output",
help="write binarized file hre",
metavar="FILE",
required=True)
parser.add_argument("--threshold",
dest="threshold",
default=200,
type=int,
help="Threshold when to show white")
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
binarize_image(args.input, args.output, args.threshold)
It looks like this for ./binarize.py -i convert_image.png -o result_bin.png --threshold 200
:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With