I have two dataframes like this:
import pandas as pd
import numpy as np
df1 = pd.DataFrame({
'key1': list('ABAACCA'),
'key2': list('1675987'),
'prop1': list('xyzuynb'),
'prop2': list('mnbbbas')
}).set_index(['key1', 'key2'])
df2 = pd.DataFrame({
'key1': list('ABCCADD'),
'key2': list('1598787'),
'prop1': [np.nan] * 7,
'prop2': [np.nan] * 7
}).set_index(['key1', 'key2'])
prop1 prop2
key1 key2
A 1 x m
B 6 y n
A 7 z b
5 u b
C 9 y b
8 n a
A 7 b s
prop1 prop2
key1 key2
A 1 NaN NaN
B 5 NaN NaN
C 9 NaN NaN
8 NaN NaN
A 7 NaN NaN
D 8 NaN NaN
7 NaN NaN
and would now like to use df1
to fill df2
using
df2.fillna(df1)
however,I get
site-packages/pandas/core/generic.py in _where(self, cond, other, inplace, axis, level, errors, try_cast) 8694
other._get_axis(i).equals(ax) for i, ax in enumerate(self.axes)
8695 ): -> 8696 raise InvalidIndexError 8697 8698 # slice me out of the otherInvalidIndexError:
I used this approach successfully in the past and I do not really understand why that one fails. Any ideas how to make it work?
EDIT
Here is an example which is very similar and works perfectly fine:
filler1 = pd.DataFrame({
'key': list('AAABCCDD'),
'prop1': list('xyzuyasj'),
'prop2': list('mnbbbqwo')
})
tobefilled1 = pd.DataFrame({
'key': list('AAABBCACDF'),
'keep_me': ['stuff'] * 10,
'prop1': [np.nan] * 10,
'prop2': [np.nan] * 10,
})
filler1['g'] = filler1.groupby('key').cumcount()
tobefilled1['g'] = tobefilled1.groupby('key').cumcount()
filler1 = filler1.set_index(['key', 'g'])
tobefilled1 = tobefilled1.set_index(['key', 'g'])
print(tobefilled1.fillna(filler1))
prints
key g
A 0 stuff x m
1 stuff y n
2 stuff z b
B 0 stuff u b
1 stuff NaN NaN
C 0 stuff y b
A 3 stuff NaN NaN
C 1 stuff a q
D 0 stuff s w
F 0 stuff NaN NaN
Definition and Usage The fillna() method replaces the NULL values with a specified value. The fillna() method returns a new DataFrame object unless the inplace parameter is set to True , in that case the fillna() method does the replacing in the original DataFrame instead.
The fillna() function is used to fill NA/NaN values using the specified method. Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame).
bfill() is used to backward fill the missing values in the dataset. It will backward fill the NaN values that are present in the pandas dataframe.
You can also construct a MultiIndex from a DataFrame directly, using the method MultiIndex.
The problem here is the duplicate index defined in df1:
df1 = pd.DataFrame({
'key1': list('ABAACCA'),
'key2': list('1675987'),
'prop1': list('xyzuynb'),
'prop2': list('mnbbbas')
}).set_index(['key1', 'key2'])
Note: Key1=A Key2=7 appears twice, the index for df1 is not unique.
Let's change that second A7 to A9
df1 = pd.DataFrame({
'key1': list('ABAACCA'),
'key2': list('1675989'),
'prop1': list('xyzuynb'),
'prop2': list('mnbbbas')
}).set_index(['key1', 'key2'])
df2 = pd.DataFrame({
'key1': list('ABCCADD'),
'key2': list('1598787'),
'prop1': [np.nan] * 7,
'prop2': [np.nan] * 7
}).set_index(['key1', 'key2'])
Thus creating unique indexing in df1, now try df.fillna:
df2.fillna(df1)
Output:
prop1 prop2
key1 key2
A 1 x m
B 5 NaN NaN
C 9 y b
8 n a
A 7 z b
D 8 NaN NaN
7 NaN NaN
I got hint of this when I tried the reindex_like
method, first with unique indexing:
df1 = pd.DataFrame({
'key1': list('ABAACCA'),
'key2': list('1675989'),
'prop1': list('xyzuynb'),
'prop2': list('mnbbbas')
}).set_index(['key1', 'key2'])
df2 = pd.DataFrame({
'key1': list('ABCCADD'),
'key2': list('1598787'),
'prop1': [np.nan] * 7,
'prop2': [np.nan] * 7
}).set_index(['key1', 'key2'])
print(df1.reindex_like(df2))
Output:
prop1 prop2
key1 key2
A 1 x m
B 5 NaN NaN
C 9 y b
8 n a
A 7 z b
D 8 NaN NaN
7 NaN NaN
Now, let's revert to the original dataframes in the post:
df1 = pd.DataFrame({
'key1': list('ABAACCA'),
'key2': list('1675987'),
'prop1': list('xyzuynb'),
'prop2': list('mnbbbas')
}).set_index(['key1', 'key2'])
df2 = pd.DataFrame({
'key1': list('ABCCADD'),
'key2': list('1598787'),
'prop1': [np.nan] * 7,
'prop2': [np.nan] * 7
}).set_index(['key1', 'key2'])
print(df1.reindex_like(df2))
Output ValueError:
ValueError: cannot handle a non-unique multi-index!
Another work-around it to create unique indexing by adding another index level with cumcount.
df1 = pd.DataFrame({
'key1': list('ABAACCA'),
'key2': list('1675987'),
'prop1': list('xyzuynb'),
'prop2': list('mnbbbas')
}).set_index(['key1', 'key2'])
df2 = pd.DataFrame({
'key1': list('ABCCADD'),
'key2': list('1598787'),
'prop1': [np.nan] * 7,
'prop2': [np.nan] * 7
}).set_index(['key1', 'key2'])
df1 = df1.set_index(df1.groupby(df1.index).cumcount(), append=True)
df2 = df2.set_index(df2.groupby(df2.index).cumcount(), append=True)
df2.fillna(df1)
Output:
prop1 prop2
key1 key2
A 1 0 x m
B 5 0 NaN NaN
C 9 0 y b
8 0 n a
A 7 0 z b
D 8 0 NaN NaN
7 0 NaN NaN
Then you can drop index level 2:
df2.fillna(df1).reset_index(level=2, drop=True)
Output:
prop1 prop2
key1 key2
A 1 x m
B 5 NaN NaN
C 9 y b
8 n a
A 7 z b
D 8 NaN NaN
7 NaN NaN
However, I think pandas should have nicer error messaging for fillna
non-unique MultiIndexes like it does for reindex_like
.
Here is problem some index values not match, for me working alternative solution with DataFrame.combine_first
:
df = df2.combine_first(df1)
print (df)
prop1 prop2
key1 key2
A 1 x m
5 u b
7 z b
7 b s
B 5 NaN NaN
6 y n
C 8 n a
9 y b
D 7 NaN NaN
8 NaN NaN
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With