I'm trying to execute a small code for NN using the MNIST dataset for characters recognition. When it comes to the fit line I get ValueError: Shapes (None, 1) and (None, 10) are incompatible
import numpy as np
#Install Tensor Flow
try:
#Tensorflow_version solo existe en Colab
%tensorflow_version 2.x
except Exception:
pass
import tensorflow as tf
tf.__version__
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
print(np.unique(y_train))
print(np.unique(y_test))
import matplotlib.pyplot as plt
plt.imshow(x_train[0], cmap='Greys');
y_train[0]
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train.shape
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(units=512, activation='relu'),
tf.keras.layers.Dense(units=10, activation='softmax')
])
model.summary()
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
h = model.fit(x_train, y_train, epochs=10, batch_size=256)
I get an error in the last line, like if x_train and y_train would be of different size. But X_train is 60000x28x28 and y_train is 60000x1
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten (Flatten) (None, 784) 0
_________________________________________________________________
dense (Dense) (None, 512) 401920
_________________________________________________________________
dense_1 (Dense) (None, 10) 5130
=================================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
_________________________________________________________________
Epoch 1/10
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-10-50705bca2031> in <module>()
6 model.summary()
7 model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
----> 8 h = model.fit(x_train, y_train, epochs=10, batch_size=256)
10 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
966 except Exception as e: # pylint:disable=broad-except
967 if hasattr(e, "ag_error_metadata"):
--> 968 raise e.ag_error_metadata.to_exception(e)
969 else:
970 raise
ValueError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:571 train_function *
outputs = self.distribute_strategy.run(
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:951 run **
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:533 train_step **
y, y_pred, sample_weight, regularization_losses=self.losses)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/compile_utils.py:205 __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:143 __call__
losses = self.call(y_true, y_pred)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:246 call
return self.fn(y_true, y_pred, **self._fn_kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:1527 categorical_crossentropy
return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/backend.py:4561 categorical_crossentropy
target.shape.assert_is_compatible_with(output.shape)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/tensor_shape.py:1117 assert_is_compatible_with
raise ValueError("Shapes %s and %s are incompatible" % (self, other))
ValueError: Shapes (None, 1) and (None, 10) are incompatible
You need to one hot encode your y_train
vectors before passing them to the fit
method. You can do that using the following code:
from keras.utils import to_categorical
# make the model and load the training dataset.
y_train = to_categorical(y_train)
# call the fit method.
The issue is here:
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
The loss, categorical_crossentropy
expects one-hot encoded vectors for the classes, as described here. However your labels are not one hot encoded.
In this case the simplest solution would be to use loss='sparse_categorical_crossentropy'
as your labels are sparse.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With