Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Using conditional to generate new column in pandas dataframe

I have a pandas dataframe that looks like this:

   portion  used 0        1   1.0 1        2   0.3 2        3   0.0 3        4   0.8 

I'd like to create a new column based on the used column, so that the df looks like this:

   portion  used    alert 0        1   1.0     Full 1        2   0.3  Partial 2        3   0.0    Empty 3        4   0.8  Partial 
  • Create a new alert column based on
  • If used is 1.0, alert should be Full.
  • If used is 0.0, alert should be Empty.
  • Otherwise, alert should be Partial.

What's the best way to do that?

like image 511
user3786999 Avatar asked Nov 20 '14 14:11

user3786999


People also ask

How do you create a new column in Pandas and assign a value?

You can use the assign() function to add a new column to the end of a pandas DataFrame: df = df. assign(col_name=[value1, value2, value3, ...])


1 Answers

You can define a function which returns your different states "Full", "Partial", "Empty", etc and then use df.apply to apply the function to each row. Note that you have to pass the keyword argument axis=1 to ensure that it applies the function to rows.

import pandas as pd  def alert(row):   if row['used'] == 1.0:     return 'Full'   elif row['used'] == 0.0:     return 'Empty'   elif 0.0 < row['used'] < 1.0:     return 'Partial'   else:     return 'Undefined'  df = pd.DataFrame(data={'portion':[1, 2, 3, 4], 'used':[1.0, 0.3, 0.0, 0.8]})  df['alert'] = df.apply(alert, axis=1)  #    portion  used    alert # 0        1   1.0     Full # 1        2   0.3  Partial # 2        3   0.0    Empty # 3        4   0.8  Partial 
like image 161
Ffisegydd Avatar answered Sep 22 '22 01:09

Ffisegydd