I would like to use shift()
to pull in data from the previous index, provided values in one of the columns, Letter
, is the same.
import pandas as pd
df = pd.DataFrame(data=[['A', 'one'],
['A', 'two'],
['B', 'three'],
['B', 'four'],
['C', 'five']],
columns=['Letter', 'value'])
df['Previous Value'] = df.apply(lambda x : x['value'] if x['Letter'].shift(1) == x['Letter'] else "", axis=1)
print df
I am getting the error:
AttributeError: ("'str' object has no attribute 'shift'", u'occurred at index 0')
Desired Output:
Letter value Previous Value
0 A one
1 A two one
2 B three
3 B four three
4 C five
Use where
on your condition where the current row matches previous row using shift
:
In [11]:
df = pd.DataFrame(data=[['A', 'one'],
['A', 'two'],
['B', 'three'],
['B', 'four'],
['C', 'five']],
columns=['Letter', 'value'])
df['Previous Value'] = df['value'].shift().where(df['Letter'].shift() == df['Letter'], '')
df
Out[11]:
Letter value Previous Value
0 A one
1 A two one
2 B three
3 B four three
4 C five
You are trying to apply .shift() to a value of a given column of a given row instead of a Series. I would do this, using groupby:
In [6]: df['Previous letter'] = df.groupby('Letter').value.shift()
In [7]: df
Out[7]:
Letter value Previous letter
0 A one NaN
1 A two one
2 B three NaN
3 B four three
4 C five NaN
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With