Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Use numpy array in shared memory for multiprocessing

People also ask

Does Python multiprocessing use shared memory?

Python 3.8 introduced a new module multiprocessing. shared_memory that provides shared memory for direct access across processes. My test shows that it significantly reduces the memory usage, which also speeds up the program by reducing the costs of copying and moving things around.

Does NumPy use multithreading?

First, numpy supports multithreading, and this can give you a speed boost in multicore environments!

Can NumPy arrays be multidimensional?

In general numpy arrays can have more than one dimension. One way to create such array is to start with a 1-dimensional array and use the numpy reshape() function that rearranges elements of that array into a new shape.

Is NumPy array memory efficient?

1. NumPy uses much less memory to store data. The NumPy arrays takes significantly less amount of memory as compared to python lists. It also provides a mechanism of specifying the data types of the contents, which allows further optimisation of the code.


To add to @unutbu's (not available anymore) and @Henry Gomersall's answers. You could use shared_arr.get_lock() to synchronize access when needed:

shared_arr = mp.Array(ctypes.c_double, N)
# ...
def f(i): # could be anything numpy accepts as an index such another numpy array
    with shared_arr.get_lock(): # synchronize access
        arr = np.frombuffer(shared_arr.get_obj()) # no data copying
        arr[i] = -arr[i]

Example

import ctypes
import logging
import multiprocessing as mp

from contextlib import closing

import numpy as np

info = mp.get_logger().info

def main():
    logger = mp.log_to_stderr()
    logger.setLevel(logging.INFO)

    # create shared array
    N, M = 100, 11
    shared_arr = mp.Array(ctypes.c_double, N)
    arr = tonumpyarray(shared_arr)

    # fill with random values
    arr[:] = np.random.uniform(size=N)
    arr_orig = arr.copy()

    # write to arr from different processes
    with closing(mp.Pool(initializer=init, initargs=(shared_arr,))) as p:
        # many processes access the same slice
        stop_f = N // 10
        p.map_async(f, [slice(stop_f)]*M)

        # many processes access different slices of the same array
        assert M % 2 # odd
        step = N // 10
        p.map_async(g, [slice(i, i + step) for i in range(stop_f, N, step)])
    p.join()
    assert np.allclose(((-1)**M)*tonumpyarray(shared_arr), arr_orig)

def init(shared_arr_):
    global shared_arr
    shared_arr = shared_arr_ # must be inherited, not passed as an argument

def tonumpyarray(mp_arr):
    return np.frombuffer(mp_arr.get_obj())

def f(i):
    """synchronized."""
    with shared_arr.get_lock(): # synchronize access
        g(i)

def g(i):
    """no synchronization."""
    info("start %s" % (i,))
    arr = tonumpyarray(shared_arr)
    arr[i] = -1 * arr[i]
    info("end   %s" % (i,))

if __name__ == '__main__':
    mp.freeze_support()
    main()

If you don't need synchronized access or you create your own locks then mp.Array() is unnecessary. You could use mp.sharedctypes.RawArray in this case.


The Array object has a get_obj() method associated with it, which returns the ctypes array which presents a buffer interface. I think the following should work...

from multiprocessing import Process, Array
import scipy
import numpy

def f(a):
    a[0] = -a[0]

if __name__ == '__main__':
    # Create the array
    N = int(10)
    unshared_arr = scipy.rand(N)
    a = Array('d', unshared_arr)
    print "Originally, the first two elements of arr = %s"%(a[:2])

    # Create, start, and finish the child process
    p = Process(target=f, args=(a,))
    p.start()
    p.join()

    # Print out the changed values
    print "Now, the first two elements of arr = %s"%a[:2]

    b = numpy.frombuffer(a.get_obj())

    b[0] = 10.0
    print a[0]

When run, this prints out the first element of a now being 10.0, showing a and b are just two views into the same memory.

In order to make sure it is still multiprocessor safe, I believe you will have to use the acquire and release methods that exist on the Array object, a, and its built in lock to make sure its all safely accessed (though I'm not an expert on the multiprocessor module).


While the answers already given are good, there is a much easier solution to this problem provided two conditions are met:

  1. You are on a POSIX-compliant operating system (e.g. Linux, Mac OSX); and
  2. Your child processes need read-only access to the shared array.

In this case you do not need to fiddle with explicitly making variables shared, as the child processes will be created using a fork. A forked child automatically shares the parent's memory space. In the context of Python multiprocessing, this means it shares all module-level variables; note that this does not hold for arguments that you explicitly pass to your child processes or to the functions you call on a multiprocessing.Pool or so.

A simple example:

import multiprocessing
import numpy as np

# will hold the (implicitly mem-shared) data
data_array = None

# child worker function
def job_handler(num):
    # built-in id() returns unique memory ID of a variable
    return id(data_array), np.sum(data_array)

def launch_jobs(data, num_jobs=5, num_worker=4):
    global data_array
    data_array = data

    pool = multiprocessing.Pool(num_worker)
    return pool.map(job_handler, range(num_jobs))

# create some random data and execute the child jobs
mem_ids, sumvals = zip(*launch_jobs(np.random.rand(10)))

# this will print 'True' on POSIX OS, since the data was shared
print(np.all(np.asarray(mem_ids) == id(data_array)))

I've written a small python module that uses POSIX shared memory to share numpy arrays between python interpreters. Maybe you will find it handy.

https://pypi.python.org/pypi/SharedArray

Here's how it works:

import numpy as np
import SharedArray as sa

# Create an array in shared memory
a = sa.create("test1", 10)

# Attach it as a different array. This can be done from another
# python interpreter as long as it runs on the same computer.
b = sa.attach("test1")

# See how they are actually sharing the same memory block
a[0] = 42
print(b[0])

# Destroying a does not affect b.
del a
print(b[0])

# See how "test1" is still present in shared memory even though we
# destroyed the array a.
sa.list()

# Now destroy the array "test1" from memory.
sa.delete("test1")

# The array b is not affected, but once you destroy it then the
# data are lost.
print(b[0])

You can use the sharedmem module: https://bitbucket.org/cleemesser/numpy-sharedmem

Here's your original code then, this time using shared memory that behaves like a NumPy array (note the additional last statement calling a NumPy sum() function):

from multiprocessing import Process
import sharedmem
import scipy

def f(a):
    a[0] = -a[0]

if __name__ == '__main__':
    # Create the array
    N = int(10)
    unshared_arr = scipy.rand(N)
    arr = sharedmem.empty(N)
    arr[:] = unshared_arr.copy()
    print "Originally, the first two elements of arr = %s"%(arr[:2])

    # Create, start, and finish the child process
    p = Process(target=f, args=(arr,))
    p.start()
    p.join()

    # Print out the changed values
    print "Now, the first two elements of arr = %s"%arr[:2]

    # Perform some NumPy operation
    print arr.sum()