Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Use GPU on python docker image

I'm using a python:3.7.4-slim-buster docker image and I can't change it. I'm wondering how to use my nvidia gpus on it.

I usually used a tensorflow/tensorflow:1.14.0-gpu-py3 and with a simple --runtime=nvidia int the docker run command everything worked fine, but now I have this constraint.

I think that no shortcut exists on this type of image so I was following this guide https://towardsdatascience.com/how-to-properly-use-the-gpu-within-a-docker-container-4c699c78c6d1, building the Dockerfile it proposes:

FROM python:3.7.4-slim-buster

RUN apt-get update && apt-get install -y build-essential
RUN apt-get --purge remove -y nvidia*
ADD ./Downloads/nvidia_installers /tmp/nvidia                             > Get the install files you used to install CUDA and the NVIDIA drivers on your host
RUN /tmp/nvidia/NVIDIA-Linux-x86_64-331.62.run -s -N --no-kernel-module   > Install the driver.
RUN rm -rf /tmp/selfgz7                                                   > For some reason the driver installer left temp files when used during a docker build (i dont have any explanation why) and the CUDA installer will fail if there still there so we delete them.
RUN /tmp/nvidia/cuda-linux64-rel-6.0.37-18176142.run -noprompt            > CUDA driver installer.
RUN /tmp/nvidia/cuda-samples-linux-6.0.37-18176142.run -noprompt -cudaprefix=/usr/local/cuda-6.0   > CUDA samples comment if you dont want them.
RUN export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64         > Add CUDA library into your PATH
RUN touch /etc/ld.so.conf.d/cuda.conf                                     > Update the ld.so.conf.d directory
RUN rm -rf /temp/*  > Delete installer files.

But it raises an error:

ADD failed: stat /var/lib/docker/tmp/docker-builder080208872/Downloads/nvidia_installers: no such file or directory

What can I change to easily let the docker image see my gpus?

like image 373
Paolo Magnani Avatar asked Jan 12 '21 14:01

Paolo Magnani


People also ask

Can I use GPU in docker?

To use your GPU with Docker, begin by adding the NVIDIA Container Toolkit to your host. This integrates into Docker Engine to automatically configure your containers for GPU support. The Container Toolkit should now be operational. You're ready to start a test container.

Does docker need GPU?

In order to do so, you need to install the nvidia-docker2 package and then use the –gpu flag when running your containers. Docker is a powerful tool that … Yes, docker can run on a GPU. In order to do so, you need to install the nvidia-docker2 package and then use the –gpu flag when running your containers.

Can Containers share GPU?

The great thing about the time-slicing is that if only one container is using the GPU, it gets the full capacity of the GPU. If another container is added to the same GPU, then each container gets 50% of the GPU's compute time. This means time-sharing is a great way to oversubscribe GPUs and improve their utilization.


1 Answers

TensorFlow image split into several 'partial' Dockerfiles. One of them contains all dependencies TensorFlow needs to operate on GPU. Using it you can easily create a custom image, you only need to change default python to whatever version you need. This seem to me a much easier job than bringing NVIDIA's stuff into Debian image (which AFAIK is not officially supported for CUDA and/or cuDNN).

Here's the Dockerfile:

# TensorFlow image base written by TensorFlow authors.
# Source: https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/tools/dockerfiles/partials/ubuntu/nvidia.partial.Dockerfile
# -------------------------------------------------------------------------
ARG ARCH=
ARG CUDA=10.1
FROM nvidia/cuda${ARCH:+-$ARCH}:${CUDA}-base-ubuntu${UBUNTU_VERSION} as base
# ARCH and CUDA are specified again because the FROM directive resets ARGs
# (but their default value is retained if set previously)
ARG ARCH
ARG CUDA
ARG CUDNN=7.6.4.38-1
ARG CUDNN_MAJOR_VERSION=7
ARG LIB_DIR_PREFIX=x86_64
ARG LIBNVINFER=6.0.1-1
ARG LIBNVINFER_MAJOR_VERSION=6

# Needed for string substitution
SHELL ["/bin/bash", "-c"]
# Pick up some TF dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
        build-essential \
        cuda-command-line-tools-${CUDA/./-} \
        # There appears to be a regression in libcublas10=10.2.2.89-1 which
        # prevents cublas from initializing in TF. See
        # https://github.com/tensorflow/tensorflow/issues/9489#issuecomment-562394257
        libcublas10=10.2.1.243-1 \ 
        cuda-nvrtc-${CUDA/./-} \
        cuda-cufft-${CUDA/./-} \
        cuda-curand-${CUDA/./-} \
        cuda-cusolver-${CUDA/./-} \
        cuda-cusparse-${CUDA/./-} \
        curl \
        libcudnn7=${CUDNN}+cuda${CUDA} \
        libfreetype6-dev \
        libhdf5-serial-dev \
        libzmq3-dev \
        pkg-config \
        software-properties-common \
        unzip

# Install TensorRT if not building for PowerPC
RUN [[ "${ARCH}" = "ppc64le" ]] || { apt-get update && \
        apt-get install -y --no-install-recommends libnvinfer${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA} \
        libnvinfer-plugin${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA} \
        && apt-get clean \
        && rm -rf /var/lib/apt/lists/*; }

# For CUDA profiling, TensorFlow requires CUPTI.
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH

# Link the libcuda stub to the location where tensorflow is searching for it and reconfigure
# dynamic linker run-time bindings
RUN ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1 \
    && echo "/usr/local/cuda/lib64/stubs" > /etc/ld.so.conf.d/z-cuda-stubs.conf \
    && ldconfig
# -------------------------------------------------------------------------
#
# Custom part
FROM base
ARG PYTHON_VERSION=3.7

RUN apt-get update && apt-get install -y --no-install-recommends --no-install-suggests \
          python${PYTHON_VERSION} \
          python3-pip \
          python${PYTHON_VERSION}-dev \
# Change default python
    && cd /usr/bin \
    && ln -sf python${PYTHON_VERSION}         python3 \
    && ln -sf python${PYTHON_VERSION}m        python3m \
    && ln -sf python${PYTHON_VERSION}-config  python3-config \
    && ln -sf python${PYTHON_VERSION}m-config python3m-config \
    && ln -sf python3                         /usr/bin/python \
# Update pip and add common packages
    && python -m pip install --upgrade pip \
    && python -m pip install --upgrade \
        setuptools \
        wheel \
        six \
# Cleanup
    && apt-get clean \
    && rm -rf $HOME/.cache/pip

You can take from here: change python version to one you need (and which is available in Ubuntu repositories), add packages, code, etc.

like image 139
anemyte Avatar answered Sep 29 '22 01:09

anemyte