I have a DataFrame that is in a too much "compact" form. The DataFrame is currently like this :
> import numpy as np
> import pandas as pd
> df = pd.DataFrame({'foo': ['A','B'],
'bar': ['1', '2'],
'baz': [np.nan, '3']})
bar baz foo
0 1 NaN A
1 2 3 B
And I need to "unstack" it to be like so :
> df = pd.DataFrame({'foo': ['A','B', 'B'],
'type': ['bar', 'bar', 'baz'],
'value': ['1', '2', '3']})
foo type value
0 A bar 1
1 B bar 2
2 B baz 3
No matter how I try to pivot, I can't get it right.
Use melt() method:
In [39]: pd.melt(df, id_vars='foo', value_vars=['bar','baz'], var_name='type')
Out[39]:
foo type value
0 A bar 1
1 B bar 2
2 A baz NaN
3 B baz 3
or
In [38]: pd.melt(df, id_vars='foo', value_vars=['bar','baz'], var_name='type').dropna()
Out[38]:
foo type value
0 A bar 1
1 B bar 2
3 B baz 3
set your index to foo, then stack:
df.set_index('foo').stack()
foo
A bar 1
B bar 2
baz 3
dtype: object
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With