Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pandas - Using merge_asof function in index

Tags:

python

pandas

The code is:

import numpy as np 
import pandas as pd

dateparse = lambda x: pd.datetime.strptime(x,'%d %m %Y %H %M')
vento = pd.read_csv('dados_tpm.txt', header=0, delim_whitespace= True, parse_dates = [['Dia', 'Mes', 'Ano', 'Hora','Minuto']], index_col = False, date_parser = dateparse)
vento1 = vento.rename(columns={'Dia_Mes_Ano_Hora_Minuto': 'Data'})
vento0 = vento1.set_index('Data')
vento_time = pd.DataFrame({'Data':pd.date_range(start='2016-07-12 18:00:00',end='2017-02-28 21:00:00',freq='3H')})
vento_time0 = vento_time.set_index('Data')
vento_2 = pd.merge_asof(vento_time0,vento0, on='Index', tolerance=pd.Timedelta("5 minutes")).fillna('NAN')

Where vento0 is something like:

Index               Vel Dir
2016-07-12 16:17:00 9.8  13.8
2016-07-12 16:18:00 10.9 1.8
2016-07-12 16:19:00 10.0 11.1
2016-07-12 16:20:00 11.0 11.0
...                 ...  ...
...                 ...  ...
2017-02-28 22:34:00 9.2  13.7

And vento_time0 seems like:

Index
2016-07-12 18:00:00
2016-07-12 21:00:00
2016-07-13 00:00:00
2016-07-13 03:00:00
...        ...
...        ...
2017-02-28 21:00:00

My data has an one minute interval and it's non regularised. The objective of this is to put it in a 3 hour interval replacing the missing values with the closests data in a range of five minutes. But when merge_asof is used, this error appears: KeyError: 'Index'. I also tried to use Data, the actual name of indexes but get the same error. The expected output will be:

Index                 Vel  Dir
2016-07-12 18:00:00   8.0  55
2016-07-12 21:00:00   16.0 67
2016-07-13 00:00:00   NAN  NAN
2016-07-13 03:00:00   19.0 83
...        ...
...        ...
2017-02-28 21:00:00   NAN  NAN

Can anyone help? Is there a way to use merge_asof function in the Index?

like image 375
Italo Lopes Avatar asked Feb 05 '23 11:02

Italo Lopes


2 Answers

Do something like this: Use .sort_values(by = 'Data') instead .set_index

vento0 = vento1.sort_values(by = 'Data')
vento_time0 = vento_time.sort_values(by = 'Data')

After do that, this should work:

vento_2 = pd.merge_asof(vento_time0,vento0, \
                        tolerance=pd.Timedelta("5 minutes")).fillna('NAN')

Be sure that your 'NAN' becomes "not a number" using:

vento_2.convert_objects(convert_numeric=True)

After use merge_asof and convert your 'NAN' you can set your index.

vento_2.set_index(['Data'], inplace=True)

like image 137
Leonardo Ferreira Avatar answered Feb 16 '23 03:02

Leonardo Ferreira


If you're trying to merge_asof() on indicies, you need to use the following:

vento_2 = pd.merge_asof(vento_time0,vento0, left_index = True, right_index = True, tolerance=pd.Timedelta("5 minutes")).fillna('NAN')

Docs here: http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.merge_asof.html

like image 42
elPastor Avatar answered Feb 16 '23 03:02

elPastor