When having a bilinear layer in PyTorch I can't wrap my head around how the calculation is done.
Here is a small example where I tried to figure out how it works:
In:
import torch.nn as nn
B = nn.Bilinear(2, 2, 1)
print(B.weight)
Out:
Parameter containing:
tensor([[[-0.4394, -0.4920],
[ 0.6137, 0.4174]]], requires_grad=True)
I am putting through a zero-vector and a one-vector.
In:
print(B(torch.ones(2), torch.zeros(2)))
print(B(torch.zeros(2), torch.ones(2)))
Out:
tensor([0.2175], grad_fn=<ThAddBackward>)
tensor([0.2175], grad_fn=<ThAddBackward>)
I tried adding up the weights in various ways but I'm not getting the same result.
Thanks in advance!
The operation done by nn.Bilinear
is B(x1, x2) = x1*A*x2 + b
(c.f. doc) with:
A
stored in nn.Bilinear.weight
b
stored in nn.Bilinear.bias
If you take into account the (optional) bias, you should obtain the expected results.
import torch
import torch.nn as nn
def manual_bilinear(x1, x2, A, b):
return torch.mm(x1, torch.mm(A, x2)) + b
x_ones = torch.ones(2)
x_zeros = torch.zeros(2)
# ---------------------------
# With Bias:
B = nn.Bilinear(2, 2, 1)
A = B.weight
print(B.bias)
# > tensor([-0.6748], requires_grad=True)
b = B.bias
print(B(x_ones, x_zeros))
# > tensor([-0.6748], grad_fn=<ThAddBackward>)
print(manual_bilinear(x_ones.view(1, 2), x_zeros.view(2, 1), A.squeeze(), b))
# > tensor([[-0.6748]], grad_fn=<ThAddBackward>)
print(B(x_ones, x_ones))
# > tensor([-1.7684], grad_fn=<ThAddBackward>)
print(manual_bilinear(x_ones.view(1, 2), x_ones.view(2, 1), A.squeeze(), b))
# > tensor([[-1.7684]], grad_fn=<ThAddBackward>)
# ---------------------------
# Without Bias:
B = nn.Bilinear(2, 2, 1, bias=False)
A = B.weight
print(B.bias)
# None
b = torch.zeros(1)
print(B(x_ones, x_zeros))
# > tensor([0.], grad_fn=<ThAddBackward>)
print(manual_bilinear(x_ones.view(1, 2), x_zeros.view(2, 1), A.squeeze(), b))
# > tensor([0.], grad_fn=<ThAddBackward>)
print(B(x_ones, x_ones))
# > tensor([-0.7897], grad_fn=<ThAddBackward>)
print(manual_bilinear(x_ones.view(1, 2), x_ones.view(2, 1), A.squeeze(), b))
# > tensor([[-0.7897]], grad_fn=<ThAddBackward>)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With