I am new to C, and my task is to create a function
f(x) = sqrt[(x^2)+1]-1
that can handle very large numbers and very small numbers. I am submitting my script on an online interface that checks my answers.
For very large numbers I simplify the expression to:
f(x) = x-1
By just using the highest power. This was the correct answer.
The same logic does not work for smaller numbers. For small numbers (on the order of 1e-7), they are very quickly truncated to zero, even before they are squared. I suspect that this has to do with floating point precision in C. In my textbook, it says that the float type has smallest possible value of 1.17549e-38, with 6 digit precision. So although 1e-7 is much larger than 1.17e-38, it has a higher precision, and is therefore rounded to zero. This is my guess, correct me if I'm wrong.
As a solution, I am thinking that I should convert x to a long double when x < 1e-6. However when I do this, I still get the same error. Any ideas? Let me know if I can clarify. Code below:
#include <math.h>
#include <stdio.h>
double feval(double x) {
/* Insert your code here */
if (x > 1e299)
{;
return x-1;
}
if (x < 1e-6)
{
long double g;
g = x;
printf("x = %Lf\n", g);
long double a;
a = pow(x,2);
printf("x squared = %Lf\n", a);
return sqrt(g*g+1.)- 1.;
}
else
{
printf("x = %f\n", x);
printf("Used third \n");
return sqrt(pow(x,2)+1.)-1;
}
}
int main(void)
{
double x;
printf("Input: ");
scanf("%lf", &x);
double b;
b = feval(x);
printf("%f\n", b);
return 0;
}
For small inputs, you're getting truncation error when you do 1+x^2. If x=1e-7f
, x*x
will happily fit into a 32 bit floating point number (with a little bit of error due to the fact that 1e-7
does not have an exact floating point representation, but x*x
will be so much smaller than 1 that floating point precision will not be sufficient to represent 1+x*x
.
It would be more appropriate to do a Taylor expansion of sqrt(1+x^2), which to lowest order would be
sqrt(1+x^2) = 1 + 0.5*x^2 + O(x^4)
Then, you could write your result as
sqrt(1+x^2)-1 = 0.5*x^2 + O(x^4),
avoiding the scenario where you add a very small number to 1.
As a side note, you should not use pow
for integer powers. For x^2, you should just do x*x
. Arbitrary integer powers are a little trickier to do efficiently; the GNU scientific library for example has a function for efficiently computing arbitrary integer powers.
There are two issues here when implementing this in the naive way: Overflow or underflow in intermediate computation when computing x * x
, and substractive cancellation during final subtraction of 1. The second issue is an accuracy issue.
ISO C has a standard math function hypot (x, y)
that performs the computation sqrt (x * x + y * y)
accurately while avoiding underflow and overflow in intermediate computation. A common approach to fix issues with subtractive cancellation is to transform the computation algebraically such that it is transformed into multiplications and / or divisions.
Combining these two fixes leads to the following implementation for float
argument. It has an error of less than 3 ulps across all possible inputs according to my testing.
/* Compute sqrt(x*x+1)-1 accurately and without spurious overflow or underflow */
float func (float x)
{
return (x / (1.0f + hypotf (x, 1.0f))) * x;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With