When I tried to udpdate PyTorch from 1.4.0 to 1.5.0, Anaconda says that all the packages are already installed.
$ conda install -c pytorch pytorch torchvision
Collecting package metadata (current_repodata.json): done
Solving environment: done
# All requested packages already installed.
$ conda list | grep -i torch
_pytorch_select 0.2 gpu_0
pytorch 1.4.0 py3.7_cuda10.0.130_cudnn7.6.3_0 pytorch
torchvision 0.5.0 py37_cu100 pytorch
I believe 1.5.0 is available in the pytorch
channel
$ conda search -c pytorch pytorch=1.5.0
Loading channels: done
# Name Version Build Channel
pytorch 1.5.0 py3.5_cpu_0 pytorch
pytorch 1.5.0 py3.5_cuda10.1.243_cudnn7.6.3_0 pytorch
pytorch 1.5.0 py3.5_cuda10.2.89_cudnn7.6.5_0 pytorch
pytorch 1.5.0 py3.5_cuda9.2.148_cudnn7.6.3_0 pytorch
pytorch 1.5.0 py3.6_cpu_0 pytorch
pytorch 1.5.0 py3.6_cuda10.1.243_cudnn7.6.3_0 pytorch
pytorch 1.5.0 py3.6_cuda10.2.89_cudnn7.6.5_0 pytorch
pytorch 1.5.0 py3.6_cuda9.2.148_cudnn7.6.3_0 pytorch
pytorch 1.5.0 py3.7_cpu_0 pytorch
pytorch 1.5.0 py3.7_cuda10.1.243_cudnn7.6.3_0 pytorch
pytorch 1.5.0 py3.7_cuda10.2.89_cudnn7.6.5_0 pytorch
pytorch 1.5.0 py3.7_cuda9.2.148_cudnn7.6.3_0 pytorch
pytorch 1.5.0 py3.8_cpu_0 pytorch
pytorch 1.5.0 py3.8_cuda10.1.243_cudnn7.6.3_0 pytorch
pytorch 1.5.0 py3.8_cuda10.2.89_cudnn7.6.5_0 pytorch
pytorch 1.5.0 py3.8_cuda9.2.148_cudnn7.6.3_0 pytorch
Why is conda not updating PyTorch to 1.5.0?
Using Python 3.7.3 & conda 4.8.3 on Ubuntu 18.04
Thanks!
The Conda install
first checks to see if a constraint is satisfied, rather than blindly trying to install the latest of everything. A better reading of the command:
conda install -c pytorch pytorch torchvision
would be
With the pytorch channel prioritized, ensure that the currently activated environment has some version of
pytorch
andtorchvision
installed.
Your environment already satisfies this constraint, so there is nothing to do.
If you want to update a package, then look into the conda update
command or, if you know a minimum version you require, then specify it:
conda install -c pytorch pytorch[version='>=1.5'] torchvision
which effectively changes the constraint.
Best practice though is to simply make a new env when you require changes to packages. Every time one changes the packages in an env, one risks breaking/invalidating existing code.
conda create -n pytorch_1_5 -c pytorch pytorch torchvison
And this will grab the latest possible versions by default.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With