I am trying to make my own Fasttext embeddings so I went to official Gensim documentation and implemented this exact code below with exact 4.0
version.
from gensim.models import FastText
from gensim.test.utils import common_texts
model = FastText(vector_size=4, window=3, min_count=1) # instantiate
model.build_vocab(sentences=common_texts)
model.train(sentences=common_texts, total_examples=len(common_texts), epochs=10)
And to my surprise it is giving me errors as:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-4-6b2d1de02d90> in <module>
1 model = FastText(vector_size=4, window=3, min_count=1) # instantiate
----> 2 model.build_vocab(sentences=common_texts)
3 model.train(sentences=common_texts, total_examples=len(common_texts), epochs=10)
~/anaconda3/lib/python3.8/site-packages/gensim/models/word2vec.py in build_vocab(self, corpus_iterable, corpus_file, update, progress_per, keep_raw_vocab, trim_rule, **kwargs)
477
478 """
--> 479 self._check_corpus_sanity(corpus_iterable=corpus_iterable, corpus_file=corpus_file, passes=1)
480 total_words, corpus_count = self.scan_vocab(
481 corpus_iterable=corpus_iterable, corpus_file=corpus_file, progress_per=progress_per, trim_rule=trim_rule)
~/anaconda3/lib/python3.8/site-packages/gensim/models/word2vec.py in _check_corpus_sanity(self, corpus_iterable, corpus_file, passes)
1484 """Checks whether the corpus parameters make sense."""
1485 if corpus_file is None and corpus_iterable is None:
-> 1486 raise TypeError("Either one of corpus_file or corpus_iterable value must be provided")
1487 if corpus_file is not None and corpus_iterable is not None:
1488 raise TypeError("Both corpus_file and corpus_iterable must not be provided at the same time")
TypeError: Either one of corpus_file or corpus_iterable value must be provided
Can someone please help what is happening here?
So I found the answer to this. They have a problem with the argument sentence
in both:
model.build_vocab(sentences=common_texts)
model.train(sentences=common_texts, total_examples=len(common_texts), epochs=10)
All you have to do is to remove the argument name or simply pass the first argument which is corpus_iterable
model.build_vocab(common_texts)
model.train(common_texts, total_examples=len(common_texts), epochs=10)
OR
model.build_vocab(corpus_iterable=common_texts)
model.train(corpus_iterable=common_texts, total_examples=len(common_texts), epochs=10)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With