This is what I have:
df = pd.DataFrame({'item': [1,1,2,2,1,1],
'shop': ['A','A','A','A','B','B'],
'date': pd.to_datetime(['2018.01.'+ str(x) for x in [2,3,1,4,4,5]]),
'qty': [5,6,7,8,9,10]})
print(df)
item shop date qty
0 1 A 2018-01-02 5
1 1 A 2018-01-03 6
2 2 A 2018-01-01 7
3 2 A 2018-01-04 8
4 1 B 2018-01-04 9
5 1 B 2018-01-05 10
This is what I want:
out = pd.DataFrame({'item': [1,1,1,1,2,2,2,2,2,1,1],
'shop': ['A','A','A','A','A','A','A','A','A','B','B'],
'date': pd.to_datetime(['2018.01.'+ str(x) for x in [2,3,4,5,1,2,3,4,5,4,5]]),
'qty': [5,6,0,0,7,0,0,8,0,9,10]})
print(out)
item shop date qty
0 1 A 2018-01-02 5
1 1 A 2018-01-03 6
2 1 A 2018-01-04 0
3 1 A 2018-01-05 0
4 2 A 2018-01-01 7
5 2 A 2018-01-02 0
6 2 A 2018-01-03 0
7 2 A 2018-01-04 8
8 2 A 2018-01-05 0
9 1 B 2018-01-04 9
10 1 B 2018-01-05 10
This is what I achieved so far:
df.set_index('date').groupby(['item', 'shop']).resample("D")['qty'].sum().reset_index(name='qty')
item shop date qty
0 1 A 2018-01-02 5
1 1 A 2018-01-03 6
2 1 B 2018-01-04 9
3 1 B 2018-01-05 10
4 2 A 2018-01-01 7
5 2 A 2018-01-02 0
6 2 A 2018-01-03 0
7 2 A 2018-01-04 8
I want to complete the missing dates (by day!) so that each group [item-shop] will end with the same date.
Ideas?
The key here is create the min
and max
within different group , then we create the range and explode
merge
back
# find the min date for each shop under each item
s = df.groupby(['item','shop'])[['date']].min()
# find the global max
s['datemax'] = df['date'].max()
# combine two results
s['date'] = [pd.date_range(x,y) for x , y in zip(s['date'],s['datemax'])]
out = s.explode('date').reset_index().merge(df,how='left').fillna(0)
out
item shop date datemax qty
0 1 A 2018-01-02 2018-01-05 5.0
1 1 A 2018-01-03 2018-01-05 6.0
2 1 A 2018-01-04 2018-01-05 0.0
3 1 A 2018-01-05 2018-01-05 0.0
4 1 B 2018-01-04 2018-01-05 9.0
5 1 B 2018-01-05 2018-01-05 10.0
6 2 A 2018-01-01 2018-01-05 7.0
7 2 A 2018-01-02 2018-01-05 0.0
8 2 A 2018-01-03 2018-01-05 0.0
9 2 A 2018-01-04 2018-01-05 8.0
10 2 A 2018-01-05 2018-01-05 0.0
I think this gives you what you want (columns are ordered differently)
max_date = df.date.max()
def reindex_to_max_date(df):
return df.set_index('date').reindex(pd.date_range(df.date.min(), max_date, name='date'), fill_value=0)
res = df.groupby(['shop', 'item']).apply(reindex_to_max_date)
res = res.qty.reset_index()
I grouped by shop, item to give the same sort order as you have in out
but these can be swapped.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With