I am trying to build a model where I have a tensor that has to be squeezed and then fed into an LSTM.
The model does not compile as the squeezed tensor does not have a layer attribute.
Using TensorFlow backend.
Traceback (most recent call last):
File "C:/workspace/keras_test/src/testing.py", line 10, in <module>
model = Model(inputs=model_in, outputs=output)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 93, in __init__
self._init_graph_network(*args, **kwargs)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 237, in _init_graph_network
self.inputs, self.outputs)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 1353, in _map_graph_network
tensor_index=tensor_index)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 1340, in build_map
node_index, tensor_index)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 1340, in build_map
node_index, tensor_index)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 1312, in build_map
node = layer._inbound_nodes[node_index]
AttributeError: 'NoneType' object has no attribute '_inbound_nodes'
For a minimum example see:
from keras import Input, backend, Model
from keras.layers import LSTM, Dense
input_shape = (128, 1, 1)
model_in = Input(tensor=Input(input_shape), shape=input_shape)
squeezed = backend.squeeze(model_in, 2)
hidden1 = LSTM(10)(squeezed)
output = Dense(1, activation='sigmoid')(hidden1)
model = Model(inputs=model_in, outputs=output)
model.summary()
How can I remove one dimension of model_in
without losing the layer information?
The backend operation squeeze
is not wrapped within a Lambda layer, so the resulting tensor is not a Keras tensor. As a consequence, it lacks some attributes such as _inbound_nodes
. You could wrap the squeeze
operation as follows:
from keras import Input, backend, Model
from keras.layers import LSTM, Dense, Lambda
input_shape = (128, 1, 1)
model_in = Input(tensor=Input(input_shape), shape=input_shape)
squeezed = Lambda(lambda x: backend.squeeze(x, 2))(model_in)
hidden1 = LSTM(10)(squeezed)
output = Dense(1, activation='sigmoid')(hidden1)
model = Model(inputs=model_in, outputs=output)
model.summary()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With