I have clients that need to all connect to a single server process. I am using UDP discovery for the clients to find the server. I have the client and server exchange IP address and port number, so that a TCP/IP connection can be established after completion of the discovery. This way the packet size is kept small. I see that this could be done in one of two ways using UDP:
In 1. if there are many clients then initially there would be many multicast messages transmitted (one from each client). Only the server would subscribe and receive the multicast messages from the clients. Once the server has responded to the client, the client ceases to send out the multicast message. Once all clients have completed their discovery of the server no further multicast messages are transmitted on the network. If however, the server is down, then each client would be sending out a multicast message beacon in intervals until the server is back up and can respond.
In 2. only the server would submit a multicast message beacon in regular intervals. This message would end up getting routed to all clients that are subscribed to the multicast group. Once the clients receive the packet the client's UDP listening socket gets closed and they are no longer subscribed to the multicast group. However, the server must continue to send the multicast beacon, so that new clients can discover it. It would continue sending out the beacon at regular intervals regardless of whether any clients are out their requiring discovery or not.
So, I see pros and cons either way. It seems to me that #1 would result in heavier load initially, but this load eventually reduces down to zero. In #2 the server would continue sending out a beacon forever.
UDP and multicast is a fairly new topic to me, so I am interested in finding out which would be the preferred approach and which would result in less network load.
I've used option #2 in the past several times. It works well for simple network topologies. We did see some throughput problems when UDP datagrams exceeded the Ethernet MTU resulting in a large amount of fragmentation. The largest problem that we have seen is that multicast discovery breaks down in larger topologies since many routers are configured to block multicast traffic.
The issue that Greg alluded to is rather important to consider when you are designing your protocol suite. As soon as you move beyond simple network topologies, you will have to find solutions for address translation, IP spoofing, and a whole host of other issues related to the handoff from your discovery layer to your communications layer. Most of them have to do specifically with how your server identifies itself and ensuring that the identification is something that a client can make use of.
If I could do it over again (how many times have we uttered this phrase), I would look for standards-based discovery mechanisms that fit the bill and start solving the other protocol suite problems. The last thing that you really want to do is come up with a really good discovery scheme that breaks the week after you deploy it because of some unforeseen network topology. Google service discovery
for a starting list. I personally tend towards DNS-SD but there are a lot of other options available.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With