string.join
connects elements inside list of strings, not ints.
Use this generator expression instead :
values = ','.join(str(v) for v in value_list)
Although the given list comprehension / generator expression answers are ok, I find this easier to read and understand:
values = ','.join(map(str, value_list))
Replace
values = ",".join(value_list)
with
values = ','.join([str(i) for i in value_list])
OR
values = ','.join(str(value_list)[1:-1])
The answers by cval and Priyank Patel work great. However, be aware that some values could be unicode strings and therefore may cause the str
to throw a UnicodeEncodeError
error. In that case, replace the function str
by the function unicode
.
For example, assume the string Libië (Dutch for Libya), represented in Python as the unicode string u'Libi\xeb'
:
print str(u'Libi\xeb')
throws the following error:
Traceback (most recent call last):
File "/Users/tomasz/Python/MA-CIW-Scriptie/RecreateTweets.py", line 21, in <module>
print str(u'Libi\xeb')
UnicodeEncodeError: 'ascii' codec can't encode character u'\xeb' in position 4: ordinal not in range(128)
The following line, however, will not throw an error:
print unicode(u'Libi\xeb') # prints Libië
So, replace:
values = ','.join([str(i) for i in value_list])
by
values = ','.join([unicode(i) for i in value_list])
to be safe.
String interpolation is a nice way to pass in a formatted string.
values = ', '.join('$%s' % v for v in value_list)
you can convert the integer dataframe into string first and then do the operation e.g.
df3['nID']=df3['nID'].astype(str)
grp = df3.groupby('userID')['nID'].aggregate(lambda x: '->'.join(tuple(x)))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With