Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Split a Pandas column of lists into multiple columns

I have a Pandas DataFrame with one column:

import pandas as pd

df = pd.DataFrame({"teams": [["SF", "NYG"] for _ in range(7)]})

       teams
0  [SF, NYG]
1  [SF, NYG]
2  [SF, NYG]
3  [SF, NYG]
4  [SF, NYG]
5  [SF, NYG]
6  [SF, NYG]

How can split this column of lists into two columns?

Desired result:

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG
like image 711
bgame2498 Avatar asked Oct 09 '22 19:10

bgame2498


People also ask

How do I split a column into multiple columns in list in pandas?

To split a pandas column of lists into multiple columns, create a new dataframe by applying the tolist() function to the column. The following is the syntax. You can also pass the names of new columns resulting from the split as a list.

How do I split a column in a list in Python?

Use the str. split() Function to Split Strings Into Two List/Columns in Python Pandas. The string can be saved as a series list or constructed from a single, separated string, multiple column dataframes. Functions used are similar to Python's default split() method, but they can only be applied to a single string.

How do you split a DataFrame list in Python?

If you wanted to split a column of delimited strings rather than lists, you could similarly do: df["teams"]. str. split('<delim>', expand=True) already returns a DataFrame, so it would probably be simpler to just rename the columns.

How do you split items into multiple columns in a data frame?

We can use the pandas Series. str. split() function to break up strings in multiple columns around a given separator or delimiter. It's similar to the Python string split() method but applies to the entire Dataframe column.


2 Answers

You can use the DataFrame constructor with lists created by to_list:

import pandas as pd

d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
                ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
print (df2)
       teams
0  [SF, NYG]
1  [SF, NYG]
2  [SF, NYG]
3  [SF, NYG]
4  [SF, NYG]
5  [SF, NYG]
6  [SF, NYG]

df2[['team1','team2']] = pd.DataFrame(df2.teams.tolist(), index= df2.index)
print (df2)
       teams team1 team2
0  [SF, NYG]    SF   NYG
1  [SF, NYG]    SF   NYG
2  [SF, NYG]    SF   NYG
3  [SF, NYG]    SF   NYG
4  [SF, NYG]    SF   NYG
5  [SF, NYG]    SF   NYG
6  [SF, NYG]    SF   NYG

And for a new DataFrame:

df3 = pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
print (df3)
  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

A solution with apply(pd.Series) is very slow:

#7k rows
df2 = pd.concat([df2]*1000).reset_index(drop=True)

In [121]: %timeit df2['teams'].apply(pd.Series)
1.79 s ± 52.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [122]: %timeit pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
1.63 ms ± 54.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
like image 432
jezrael Avatar answered Oct 12 '22 10:10

jezrael


Much simpler solution:

pd.DataFrame(df2["teams"].to_list(), columns=['team1', 'team2'])

Yields,

  team1 team2
-------------
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG
7    SF   NYG

If you wanted to split a column of delimited strings rather than lists, you could similarly do:

pd.DataFrame(df["teams"].str.split('<delim>', expand=True).values,
             columns=['team1', 'team2'])
like image 95
Joe Davison Avatar answered Oct 12 '22 09:10

Joe Davison