I want to type-check Pandas DataFrames i.e. I want to specify which column labels a DataFrame must have and what kind of data type (dtype
) is stored in them. A crude implementation (inspired by this question) would work like this:
from collections import namedtuple
Col = namedtuple('Col', 'label, type')
def dataframe_check(*specification):
def check_accepts(f):
assert len(specification) <= f.__code__.co_argcount
def new_f(*args, **kwds):
for (df, specs) in zip(args, specification):
spec_columns = [spec.label for spec in specs]
assert (df.columns == spec_columns).all(), \
'Columns dont match specs {}'.format(spec_columns)
spec_dtypes = [spec.type for spec in specs]
assert (df.dtypes == spec_dtypes).all(), \
'Dtypes dont match specs {}'.format(spec_dtypes)
return f(*args, **kwds)
new_f.__name__ = f.__name__
return new_f
return check_accepts
I don't mind the complexity of the checking function but it adds a lot of boilerplate code.
@dataframe_check([Col('a', int), Col('b', int)], # df1
[Col('a', int), Col('b', float)],) # df2
def f(df1, df2):
return df1 + df2
f(df, df)
Is there a more Pythonic way of type-checking DataFrames? Something that looks more like the new Python 3.6 static type-checking?
Is it possible to implement it in mypy?
Try pandera
A data validation library for scientists, engineers, and analysts seeking correctness.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With