Can you help me to find a simple tutorial of how sign a string using ECDSA algorithm in java. But without using any third-party libraries like bouncycastle. Just JDK 7. I found it difficult to search a simple example, I'm new to cryptography.
import java.io.*;
import java.security.*;
public class GenSig {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
/*
* Generate a DSA signature
*/
try {
/*
* Generate a key pair
*/
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA", "SUN");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");
keyGen.initialize(1024, random);
KeyPair pair = keyGen.generateKeyPair();
PrivateKey priv = pair.getPrivate();
PublicKey pub = pair.getPublic();
/*
* Create a Signature object and initialize it with the private key
*/
Signature dsa = Signature.getInstance("SHA1withDSA", "SUN");
dsa.initSign(priv);
String str = "This is string to sign";
byte[] strByte = str.getBytes();
dsa.update(strByte);
/*
* Now that all the data to be signed has been read in, generate a
* signature for it
*/
byte[] realSig = dsa.sign();
System.out.println("Signature: " + new String(realSig));
} catch (Exception e) {
System.err.println("Caught exception " + e.toString());
}
}
}
How to modify it for ECDSA?
ECDSA Verify Signature The algorithm to verify a ECDSA signature takes as input the signed message msg + the signature {r, s} produced from the signing algorithm + the public key pubKey, corresponding to the signer's private key. The output is boolean value: valid or invalid signature.
A main feature of ECDSA versus another popular algorithm, RSA, is that ECDSA provides a higher degree of security with shorter key lengths. This increases its ROI further as ECDSA uses less computer power than RSAm a less secure competing equation.
ECDSA is used with a signer to generate a digital signature for data, with verifier to verify the authenticity of the signature. Every signatory has a public key and a private key . In fact, only the signer's public key allows anyone to verify the validity of the signature of the message.
Elliptic Curve Digital Signature Algorithm or ECDSA is a cryptographic algorithm used by Bitcoin to ensure that funds can only be spent by their rightful owners. While the private key is a secret number, known only to the person that generated it.
class ECCCipher {
@Override
public byte[] sign(PrivateKey privateKey, String message) throws Exception {
Signature signature = Signature.getInstance("SHA1withECDSA");
signature.initSign(privateKey);
signature.update(message.getBytes());
return signature.sign();
}
@Override
public boolean verify(PublicKey publicKey, byte[] signed, String message) throws Exception {
Signature signature = Signature.getInstance("SHA1withECDSA");
signature.initVerify(publicKey);
signature.update(message.getBytes());
return signature.verify(signed);
}
}
========================
public class ECCCipherTest {
private final KeyPairGenerator keygen;
public ECCCipherTest() throws NoSuchProviderException, NoSuchAlgorithmException, InvalidAlgorithmParameterException {
Security.addProvider(new BouncyCastleProvider());
this.keygen = KeyPairGenerator.getInstance("ECDSA", "BC");
keygen.initialize(new ECGenParameterSpec("brainpoolP384r1"));
}
@Test
public void ECC_CipherTest_1() throws Exception {
String message = "hello world";
ICipher<PrivateKey, PublicKey> cipher = new ECCCipher();
KeyPair keyPair = keygen.generateKeyPair();
byte[] encrypted = cipher.sign(keyPair.getPrivate(), message);
Assert.assertTrue(cipher.verify(keyPair.getPublic(), encrypted, message));
}
}
this is a small code snippet from my project. it works for me. I have included one junit test as well; hopefully this helps.
just in case anyone wonders how we load the private key and pubkey: (note: privKey is the byte array representing the BigInteger in java, and the pubKey is the curve point in binary format)
@Override
public PrivateKey generatePrivateKey(byte[] keyBin) throws InvalidKeySpecException, NoSuchAlgorithmException {
ECNamedCurveParameterSpec spec = ECNamedCurveTable.getParameterSpec("secp256k1");
KeyFactory kf = KeyFactory.getInstance("ECDSA", new BouncyCastleProvider());
ECNamedCurveSpec params = new ECNamedCurveSpec("secp256k1", spec.getCurve(), spec.getG(), spec.getN());
ECPrivateKeySpec privKeySpec = new ECPrivateKeySpec(new BigInteger(keyBin), params);
return kf.generatePrivate(privKeySpec);
}
@Override
public PublicKey generatePublicKey(byte[] keyBin) throws InvalidKeySpecException, NoSuchAlgorithmException {
ECNamedCurveParameterSpec spec = ECNamedCurveTable.getParameterSpec("secp256k1");
KeyFactory kf = KeyFactory.getInstance("ECDSA", new BouncyCastleProvider());
ECNamedCurveSpec params = new ECNamedCurveSpec("secp256k1", spec.getCurve(), spec.getG(), spec.getN());
ECPoint point = ECPointUtil.decodePoint(params.getCurve(), keyBin);
ECPublicKeySpec pubKeySpec = new ECPublicKeySpec(point, params);
return kf.generatePublic(pubKeySpec);
}
Here is small example based on your example.
NOTE: this is the original code for this answer, please see the next code snippet for an updated version.
import java.math.BigInteger;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
import java.security.Signature;
public class ECDSAExample {
public static void main(String[] args) throws Exception {
/*
* Generate an ECDSA signature
*/
/*
* Generate a key pair
*/
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
keyGen.initialize(256, random);
KeyPair pair = keyGen.generateKeyPair();
PrivateKey priv = pair.getPrivate();
PublicKey pub = pair.getPublic();
/*
* Create a Signature object and initialize it with the private key
*/
Signature dsa = Signature.getInstance("SHA1withECDSA");
dsa.initSign(priv);
String str = "This is string to sign";
byte[] strByte = str.getBytes("UTF-8");
dsa.update(strByte);
/*
* Now that all the data to be signed has been read in, generate a
* signature for it
*/
byte[] realSig = dsa.sign();
System.out.println("Signature: " + new BigInteger(1, realSig).toString(16));
}
}
UPDATE: Here is slightly improved example removing deprecated algorithms. It also explicitly requests the NIST P-256 curve using the SECG notation "secp256r1" as specified in RFC 8422.
import java.math.BigInteger;
import java.security.*;
import java.security.spec.ECGenParameterSpec;
public class ECDSAExample {
/**
* @param args the command line arguments
*/
public static void main(String[] args) throws Exception {
/*
* Generate an ECDSA signature
*/
/*
* Generate a key pair
*/
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC");
keyGen.initialize(new ECGenParameterSpec("secp256r1"), new SecureRandom());
KeyPair pair = keyGen.generateKeyPair();
PrivateKey priv = pair.getPrivate();
PublicKey pub = pair.getPublic();
/*
* Create a Signature object and initialize it with the private key
*/
Signature ecdsa = Signature.getInstance("SHA256withECDSA");
ecdsa.initSign(priv);
String str = "This is string to sign";
byte[] strByte = str.getBytes("UTF-8");
ecdsa.update(strByte);
/*
* Now that all the data to be signed has been read in, generate a
* signature for it
*/
byte[] realSig = ecdsa.sign();
System.out.println("Signature: " + new BigInteger(1, realSig).toString(16));
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With